The 70th Scientific Conference of the University of Latvia Session of Geology Section "Groundwater in sedimentary Basins" January 30, 2012

The state of art and new trends in application of isotope –geochemistry for groundwater research Rein.Vaikmäe

Institute of Geology at Tallinn University of Technology, Estonia Rein.vaikmae@ttu.ee

Outlines:

- A short look in the history
- Willi Dansgaard
- The role of IAEA
- Tallinn isotope Lab
- New trends- noble gas applications

Willi Dansgaard

 One of the pioneers of isotope hydrology and ice core research Dr.
 Willi Dansgaard passed away in January 2011 at the age of 88.

The beginning

- 1951 MS Lab in the Copenhagen University O&N isotopes for biological and medical research
- 1952:discovered O18/T correlation in precipitation
- "The O18- abundance in fresh water",
- Geochim, et Cosmochim Acta 6, 1954
- "Stable isotopes in precipitation" Tellus 16, 1964

Isotopes in precipitation1952/1961

Figure 7. Observed $\delta^{3}O$ in average annual precipitation as a function of mean annual air temperature (Dansgaard, 1964). Note that all the points on this graph are for high latitudes (>45°). The $\delta^{18}O$ values are calculated as follows:

$$\delta^{18}O = \frac{{}^{18}O/{}^{16}Osample{}^{-18}O/{}^{16}Ostd}{{}^{18}O/{}^{16}Ostd} \times 1000$$

IAEA

- Formally establised in 1957
- Isotope Hydrology Section:
- Radioactive fallout from atmospheric thermonuclear testing (particularly tritium and its impact on human health and the environment

THE GLOBAL NETWORK OF ISOTOPES IN PRECIPITATION GNIP

Pradeep Aggarwal

Luis Araguás

International Atomic Energy Agency

Water Resources Programme

Isotope Hydrology Section

Main objective of the Water Resources Programme of the IAEA

To improve the management of water resources by Member States with the use of isotope technologies

- Improve understanding of the water cycle
- Sustainable exploitation of water resources
- Improved hydrogeological and hydrogeochemical data.
- Capacity for monitoring the quantity and quality of water resources

scientific background of isotope hydrology

• Isotope fractionation of ¹⁸O and ²H occurs during evaporation, condensation, and vapor transport

Stable isotopes are fingerprints of water
→ excellent tracers of the origin of water, and of changes in the hydrological cycle

Oxygen and hydrogen isotopes as tracers in the Water cycle and climate

Joint activity IAEA/WMO since 1961

GNIP programme in hydrology, climatology and related fields

Main objective of GNIP

Systematic collection of basic data on isotopic content in precipitation (monthly basis) on a global scale to determine temporal and spatial variations of environmental isotopes in precipitation

1990s

New monitoring needs, besides "classical input function for hydrology"

Global climate modelling requires broader spatial coverage \rightarrow AGCM

Interest in:

High latitudes and altitude areas

Climate-sensitive areas

Tropical zones

GNIP STATIONS

1953-2006, about 830 stations

GNIP STATIONS / Record > 2 years

ACTIVE GNIP STATIONS

¹⁸O and ²H RECORDS (in years)

Contents of the GNIP database

- amount of precipitation (mm)
- Type of precipitation (rain, snow, both)
- •Mean air temperature (°C)
- Mean water vapour pressure (hPa)
 Monthly values:
- •Total
- •Stable Isotope contents (0-18, H-2) (%)
- Tritium content and uncertainty (TU)

Status of the network

About 210 active stations in 53 countries

The IAEA's Isotope Hydrology Laboratory is currently performing isotope analyses of about 40 % of the collected precipitation samples

30 other laboratories are analysing GNIP samples

Structure of the GNIP network

The network is composed of:

- IAEA/WMO stations situated in climatically relevant locations
- National Networks composed of stations and labs operated by national authorities

 affiliated stations which are stations resulting from hydrological studies, often of short-term in nature

Operation of GNIP

- International Atomic Energy Agency
 - Isotope Hydrology Section
 - Isotope Hydrology Laboratory
- World Meteorological Organization
 - Link to the stations
 - Meteorological information
- Cooperating institutes and laboratories (voluntary basis)

Latest developments

- GNIP data distributed into 3 categories
 - GNIP- monthly ~100.000 records ~780 st
 - GNIP- event ~25.000 records ~100 st
 - GNIP- vapour ~700 records ~6 st
- Completion of ISOHIS-Map
 - Easier visualization to GNIP, GNIR,

Creation of National focal points

- Link with national institutes coordinating activities related to isotope monitoring
- Data compilation and quality control at national level → submission to the GNIP database

Isotopes help to define groundwater origin, dynamics and flow patterns

Fig. 1: Hydrogeological setting of Chapai Nawabganj area.

Santiago de Chile: Isotopes help to define sources of recharge, groundwater origin, flow patterns and pollutant transport

The graph shows examples of isotopic changes in a Greenland ice core (GRIP) and a lake archive (Ammersee, Germany) over the past 16,000 years interpreted mainly as temperature signals. Higher delta values of oxygen-18 reflect warmer climatic conditions.

Source: based on U.v. Grafenstein, H.Erlenkeuser, A. Brauer, J. Jouzel, S. Johnsen (1999): A mid-European decadal isotope-climate record from 15,500 to 5,000 years B.P. - Science 284, 1654-1657.

Modelling isotope contents over the Andes

Figure 6 This schematic traces the δ^{18} O composition of the water vapor and precipitation along a transect from the Atlantic Ocean to the top of the Andes (Quelccaya ice cap). Each of the four steps shown is discussed in the text. This figure was modified from Grootes *et al.* (1989).

Links of GNIP with intern. programs

- GTN-H Global Terrestrial Networks Hydrology
- GCOS Global Climate Observing System
- UNESCO-IHP
- UNEP-GEMS Global Env Monitoring System
- IGBP-PAGES Past Global Changes
- World Data Centre-A for paleoclimatology
- WMO WCRP (GEWEX CLIVAR)

GNIP/WMO stations

National networks

Argentina, Australia, Austria, Canada, China, Chile, Croatia, France, Germany, Morocco, Netherlands, Portugal, South Africa, Spain, Switzerland, Turkey, USA

One station maintained in:

Algeria, Egypt, Indonesia, Israel, Jordan, New-Zealand, Poland, Slovenia, U.K.

Tallinn Isotope Lab

- Established in early 70th
- Major research objects
- Ice cores (Svalbard, Antarctica)
- Permafrost & massive ground ice (Siberia& Arctic Canada
- Groundwater

TC/EA with liquid injector (δD and $\delta^{18}O$)

Delta V Advantage (Thermo Fisher Scientific)

000

linde-

DELTA

ANTAGE Isotrone Rutin Mas

PICARRO L2120-i δD and $\delta^{18}O$ Analyzer (L2120-i Isotopically light meltwater from Scandinavian ice sheet in the Cambrian-Vendian aquifer system of northern Estonia

Study landmarks

- monitoring of δ¹⁸O in Estonian groundwater (in 1980`s)
- isotope meetings in Freiberg/Leipzig (in 1980`s)
- Miniconference on palaeogroundwaters, Paris, 1993
- EU 4th FP project PALEAUX (1996-1999)
- EU 5th FP project BASELINE (2000-2003)

Buried valleys

Major chemical types of Cm-V groundwater

- "Original/relict " Cm-V water in South Estonia: Cl-Na type; TDS concentration 2 – 20 g/l
- 2. Freshwater in North Estonia: Ca-Na-HCO₃-Cl type; TDS concentration 300 1000 mg/l
- 3. Mixture of relict and freshwater in NE Estonia: CI- HCO₃-Na type; TDS about 1 g/l
- 4. Freshwater around buried valleys: Ca- HCO₃ type; TDS concentration 200 500 mg/l

The characteristic isotopic composition of Estonian groundwaters

Aquifer system	Lithology	δ ¹⁸ O, ‰	¹⁴ C, pmC	³ H, TU
Ordovician	limestones,	-11,7 to	43.77 to	13.1 to
	dolomites	-12.2	90.91	21.0
Ordovician -Cambrian	detrial sandstones, sandstones	-11,4 to -18.9	2.40 to 18.60	1.8 to 21.3
Cambrian-	sandstones	-18.1 to	1.40 to	0.5 to
Vendian		- 22.0	12.76	2.1

Atmospheric precipitation: annual mean $\delta^{18}O = -10.4$ ‰

Major chemical types of Cm-V groundwater

Special features

- δ¹³C values between 8.6 to 19.3‰
- high gas concentration in several wells (oversaturation by factor 2-5!)
- Methane in some gas samples (δ¹³C between -75 to - 78 ‰ :biogenic origin?)
- NGRT and ³⁹Ar analysis

Formation of palaeogroundwater:some hypothesis

- Cryogenic metamorphism?
- Baltic Ice Lake?
- Subglacial drainage through aquifers?

Emian interglacial

Nay channels

Valley cut by subglacial meltwater on Bylot Island

Buried valleys in Estonia

Subglacial meltwater flow

Conclusions

- Cm-V groundwater in N-Estonia recharged during the last glaciation
- Most characteristic features: lightest known oxygen isotopic composition in Europe, low ¹⁴C concentration and absence of ³H
- Overexploitation has resulted in development of two basin-wide depressions of potentiometric level
- The main sources of dissolved load are the leaching of host rock and leakage from underlying crystalline basement
- Intrusion of seawater is at present time not evident, but should be considered in coming decades

GROUNDWATER DATING AND PAST CLIMATE RECONSTRUCTION

A review with focus on <u>noble gases</u> and recharge conditions in glacial environments

Roland Purtschert Physics Institute, University of Bern, Switzerland

Jose Corcho Institute of Radiation Physics, University of Lausanne

Rolf Kipfer Swiss Federal Institute of Aquatic Science and Technology (EAWAG)

> Z.-T. Lu Physics Division, Argonne National Laboratory, USA

Neil Sturchio Department of Earth and Environmental Sciences, University of Illinois at Chicago

Palaeohydrology: Groundwater as a climate archive

Relations

Questions and Topics

Timescales of groundwater dating methods

³⁹Ar: Key data

www.jolyon.co.uk

Detection by decay counting

LLC facility at University of Bern

- Deep laboratory (70 m water equivalent) build with low activity concrete
- Passive shielding with old lead
- Active shielding (anti-coincidence arrangement)

AtomTrap Trace Analysis (ATTA): Basic Principle - laser based atom counting

ATTA 3

⁸¹Kr: Nubian Aquifer Egypt Area of Investigation

Sampling conditions in Egypt(1)

Results

- 6 samples were dated
- Error < 10% with one exception</p>
- Age range : 0.2-1 Mio years

Noble gases (He, Ne, Ar, Kr, Xe)

Inverse modeling of the observed noble gas concentrations is used to interpret the data in terms of recharge temperature and excess air.
Excess Air

Palaeowaters: Interpretation of high Excess Air (EA)

events

Recharge of glacial meltwater that is oversaturated due to dissolved air bubbles

Case study sites

Zhu & Kipfer, 2010
2: Klump et al., 2008
3: Ma et 1: al., 2004
4: Vaikmäe et al., 2001
5: (Andrews & Lee, 1979
6: Blaser et al., 2010
7: Corcho et al., 2011
8: Beylerle al, 1998
Purtschert et al, 2001

90 E

EUROPE: last glacial maximum

e field

Scandinavian ice sheet

Ice age Earth at glacial maximum. Based on: "Ice age terrestrial carbon changes revisited" by Thomas J. Crowley (Global Biogeochemical Cycles, Vol. 9, 1995, pp. 377-389

Cambrian Vendian Aquifer, Estonia (Vaikmäe et al, 2001)

Pleistocene (¹⁴C depleted) waters are characterized by

- •A strongly depleted $\delta^{18}O$ signature
- •Very high excess air contents

 Recharge under high pressure conditions
 Sub glacial recharge (

<u>meltwat</u>er

Noble gas recharge temperature

Cenomanian Aquifer, Czech Republic Corcho et al, submitted

Sandstone Aquifer, Wisconsin Klump et al, 2008

Excess air as hydraulic proxy

Marshall aquifer, Southern Mic Ma et al., 2004

Conclusions

Acknowledgements

 Roland Purtschert and Swiss noble gas team + IAEA IsotopeHydrology Section for summary slides