ESF Project "Establishment of interdisciplinary scientist group and modelling system for groundwater research"

MECHANISMS OF GROUNDWATER RECHARGE IN THE BALTIC ARTESIAN BASIN

<u>Alise BABRE¹</u>, Rein VAIKMÄE², Tõnu MARTMA², Konrāds POPOVS¹, Aija DĒLIŅA¹

¹ University of Latvia, Faculty of Geography and Earth sciences, <u>alise.babre@lu.lv</u>
² Institute of Geology at Tallinn University of Technology, <u>rein.vaikmae@gi.ee</u>

Jesium 2012, 2 – 9. September, Leipzig, Germany

INVESTING IN YOUR FUTURE

Project Nr. 2009/0212/1DP/1.1.1.2.0/09/APIA/VIAA/060

- Groundwater is the important water source for most of BAB area, including Capitals of Baltic states.
- Cambrian-Vendian aquifer is one of a major drinking water source for Northern Estonia, including Tallinn.
- For Central Estonia the Silurian and for Southern Estonia Devonian aquifers are the major water sources.
- For central part of the Basin, including city of Riga Quaternary and Upper Devonian aquifers are of most importance.
- Lithuania have widest range of aquifers, howewer, majority cities are using Quaternary aquifer.

Study area

Fig. 1. Spatial context of Baltic artesian basin

<u>Characteristics of artesian</u> <u>basin:</u> Total area: 484 000 m² Volume: 579 000 km³

ESF Project "Establishment of interdisciplinary scientist group and modelling system for groundwater research" Project number 2009/0212/1DP/1.1.1.2.0/09/APIA/VIAA/060 3

Geological and Hydrogeological setting

Fig 2. Horizontal cross section of BAB at depth -50 m bsl. Vectors iustrate flow direction and relative flow velocity – more red vectors indicate faster flow velocities, more blue – smaller velocities. Profile lines A-B-C and D-E-F in Fig 3 and Fig 4. EPSG:25884 Baltic TM projection.

Geological and Hydrogeological setting

Questions to be answered

- What is the age composition of studied aquifers?
- What is spatial difference of stable isotopic composition?
- Is there relationship between stable isotopic composition and other groundwater characteristics?
- What are average stable isotope composition values in particular aquifers?
- How deep modern groundwater can be found?
- How we can distinguish different groundwater end members?

Water stable isotope data

Overview results - chemistry

Aquifer	Northern part		Ce	entral part	Southern part		
system	TDS, g/l	Water type	TDS, g/l	Water type	TDS, g/l	Water type	
Cambrian - Vendian	0.5 - 20	Ca-HCO3. Na-Cl	80 - 120	Na-Cl	0.5 - 80	Na-Cl. Ca-HCO3	
Cambrian - Ordovician	<10	Ca-HCO3. Na-Cl	10-100	Na-Cl	1 - 180	Na-Cl. Ca-HCO3	
Silurian	<10	Ca-HCO3. Na-Cl	0.5 - 50	Na-Cl. Ca-HCO3	0.5-200	Na-Cl. Ca-HCO3	
Lower-Middle Devonian	<5	Ca-HCO3. Na-Cl	0.5 - 15	Na-Cl. Ca-HCO3	2 - 75	Na-Cl	
Middle Devonian	<0.5	Ca-HCO3	0.5 - 3	Ca-HCO3. Na-Cl. Ca - SO4	0.5 - 35	Na-Cl. Ca - SO4	
Upper Devonian (sandstones)	<0.5	Ca-HCO3	0.5 - 2	Ca-HCO3	0.5 - 25	Na-Cl. Ca-HCO3	
Upper Devonian (carbonates)	<0.5	Ca-HCO3	0.5 - 2	Ca-HCO3. Ca-SO4	0.5 - 4	Na-Cl. Ca-HCO3 Ca-SO4	
Carboniferous			0.1-1	Ca-HCO3	0.1-1	Na-Cl. Ca-HCO3	
Permian			<0.5	Ca-HCO3	0.5 - 80	Na-Cl. Ca-HCO3	
Triasic			<0.5	Ca-HCO3	0.1 - 55	Na-Cl. Ca-HCO3	
Jurassic			<0.5	Ca-HCO3	0.1-3	Na-Cl. Ca-HCO3	
Cretaceous					<0.5	Ca-HCO3	
Paleogene- Neogene					<0.5	Ca-HCO3	
Quaternary	<0.5	Ca-HCO3	<0.5	Ca-HCO3	<0.5	Ca-HCO3	

Table 1. Approximated description of major aquifers in BAB.

(PUMA,2012, Raidla et al., 2012, Mazeika et al.,2009, and Juodkazis, 1989)

Overview results – isotopes, CFC

Aquifer	Northern part			Central part			Southern part			
system	δ ¹⁸ O values	¹⁴ C, pmC	³ H, TU	ξ ¹⁸ O values	¹⁴ C, pmC	CFC, ages	³ H, TU	δ ¹⁸ O values	¹⁴ C, pmC	³ H, TU
Cambrian - Vendian	-18.1 to -22.9	1.4 - 12.6	0.5 -2.1	-4.6to -5.3	х	х	х	х	х	x
Cambrian - Ordovician	-11.4 to -18.9	2.4 - 18.6	1.8 - 21.3	Х	х	х	х	х	х	x
Ordovician	-11.7 to -12.2	43.7 - 90.9	13.1 - 21	х	х	х	х	х	х	x
Lower-Middle Devonian	-10.9 to -12.6	х	х	-10.9 to -12.3	х	х	х	-4.5 to -9.9	х	x
Middle Devonian	-10.7 to -11.8	х	х	-10.7 to -13.4	х	>65	х	-9.6 to -12.6	1 - 95	<0.1 - 1
Upper Devonian (sandstones)	-11.1 to -11.3	x	x	-10.2 to -13.2	х	35 - >65	<0.2 -17.6	-11.7 to -13	2.1 - 62.4	0.2 -33
Upper Devonian (carbonates)	х	х	х	-9.4 to -12.2	х	20 - >65	<0.2 - 7.5	-10.4 to -12.2	1.8 - 113	2.1 - 18.3
Quaternary	Х	x	х	-8.6 to -12.3	х	20 - 65	<0.2 - 10.4	-10.4 to -11.7	16.3 - 111	0.9 - 17.6

Table 2. Approximated description of major aquifers in BAB. (PUMA,2012, Raidla et al., 2012, Mazeika et al.,2009, and Juodkazis, 1989

Water stable isotopes

Water stable isotopes

Spatial distribution of **J180** in Cm-Vendian

Spatial distribution of **J180** in D₁₋₂ sandstones

Fig. 12. Spatial distribution of **J180** in Lower-Middle Devonian aquifer.

13

and modelling system for groundwater research" Project number 2009/0212/1DP/1.1.1.2.0/09/APIA/VIAA/060

Spatial distribution of **3180** in D₂ aquifer

Fig. 13. Spatial distribution of **J180** in Middle Devonian aquifer.

Spatial distribution of **J180** in D₃ sandstones

Fig. 14. Spatial distribution of **J180** in Upper Devonian sandstone aquifer. Data from PUMA project and Mazeika et al.,2009

Spatial distribution of **3180** in D₃ carbonates

Project number 2009/0212/1DP/1.1.1.2.0/09/APIA/VIAA/060

Fig. 15. Spatial distribution of **J180** *in Upper Devonian carbonate aquifer.* Data from PUMA project and Mazeika et al.,2009

Spatial distribution of **3180** in Q aquifer

Fig. 16. Spatial distribution of **3180** in Quaternary aquifer

Principal component analysis

Paramteres		Component	
Depth, below surface	1 ,647	2 -,106	3 -,022
δ ¹⁸ O	-,430	,724	,205
δ ² H	-,349	,695	,187
Cl	,810	-,265	,063
SO4	,200	-,094	912
HCO3	-,066	,622	-,090
Са	,034	,077	922
к	,859	,019	,116
Mg	,784	,275	379
Na	,857	-,234	,052
Fe	,179	,580	-,077

Table.3. **Results from principal component analysis** (Data from cemtral part of the basin)

Na - K - Cl - ³¹⁸O - ²H ³¹⁸O - ²H - HCO₃ – Fe Ca – SO4 - Mg

Conclusions

- In the Northern part of BAB three groundwater end-members can be distinguished: fresh and isotopically depleted δ¹⁸O composition of water glacial melt water of Weichelian Ice Age mainly in Cambrian-Vendian aquifer, Na-Ca-CI composition basin brine with less depleted isotopic values of unknown age and modern meteoric water with stable isotope signal close to nowadays precipitation.
- In the Central part of the basin, fresh Ca-HCO3 and Ca-SO4 type predominate in the upper aquifers were groundwaters have stable isotope signal similar to nowadays precipitation. Age dating with CFC's suggest, that modern groundwater can be found up to 100 meters depth. However in deeper embedded aquifers TDS significantly increases, dominant groundwater type is Na-CI and stable isotope values become less negative.
- In the southern part of the basin as well groundwaters of modern recharge can be found in the upper part. Groundwaters of Holocene age predominates up to 600 m, in the western part of the basin it was determined that groundwater recharge in Devonian aquifers took place during the last ice age as well, however, stable isotope composition is far less depleted than in northern part.

References

- Juodkazis, V. editor. 1989. Regional hydrogeology of Baltic countries. Vilnius, 220 p. (in Russian)
- Mokrik R., Mažeika J., Baublytė A., Martma T. (2009) The groundwater age in the Middle-Upper Devonian aquifer system, Lithuania. *Hydrogeology Journal*, 17: 871–889
- 3. Paškevičius, J. 1997. *The Geology of the Baltic Republics*. Vilnius University, Geological Survey of Lithuania, Vilnius, 387 pp.
- 4. Punning, J.M., Toots, M., Vaikmäe R. 1987. Oxygen -18 in estonian natural waters. *Isotopenpraxis*, 17: 27-31
- 5. Raidla, V., Kirsimäe, K., Vaikmäe, R., Kaup, E., Martma, T. 2012. Carbon isotope systematics of the Cambrian-Vendian aquifer system in the northern part in the Baltic basin: implications to the age and evolution of groundwater. *Applied Geochemistry*, 27: 2042 2052
- IAEA/WMO. 2006. Global Network of Isotopes in Precipitation. The GNIP Database. Available at: <u>http://www.iaea.org/water</u>

Thank you!

