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Abstract  

The till micromorphology examination in thin sections are routinely used tool to 
study the formation of subglacial sediments processes, but the microstructures are 
described in subjective terms, and objective research methods are sparse. A spatial 
distribution of microfabric is examined in tills outcropping along costal cliffs of Baltic Sea 
in Western Latvia, using especially developed automated toll. A varied microfabric 
distribution in tills is found: domain-like, well developed unimodal or distinctly bimodal. It 
is concluded that microfabric usually is similar to the macrofabric orientation, but the 
microfabric strength is significantly lower. Results indicate that the till microfabric 
distribution can indicate the processes active in the last stages of till formation. 

Keywords: Subglacial environment, micromorphology, till microfabric, image 
analysis, Latvia. 
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Anotācija  

Morēnas mikromorfoloăijas analīze plānslīpējumos tiek tradicionāli izmantota 
zemledāja nogulumu veidošanās pētījumos, tomēr mikrostruktūras tiek aprakstītas 
subjektīvi un reti tiek izmantota objektīvas izpētes metodes. Darbā ir pētīts 
mikrolinearitātes telpiskais sadalījums morēnās, kas atsedzas Baltijas jūras stāvkrastos 
Rietumlatvijā, izmantojot īpaši izstrādātu automatizētu paĦēmienu. Ir konstatēts, ka 
morēnām raksturīgs daudzveidīgs mikrolinearitātes sadalījums: domēnu tipa, labi izteikts 
vienmodāls vai izteikti divmodāls. Vidējā mikrolinearitātes orientācija ir līdzīga 
makrolinearitātes virzienam, tomēr mikrolinearitāte ir būtiski vājāk izteikta. Rezultāti 
liecina, ka analizējot morēnas mikrolinearitātes telpisko sadalījumu, ir iespējams raksturo 
morēnas veidošanās pēdējās fāzes. 

Atslēgas vārdi: zemledāja vide, mikromorfoloăija, morēnas mikrolinearitāte, 
attēla analīze, Latvija 
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Introduction 

In the last decades the micromorphology is an established tool in the glacial 
geology. Large size thin section from glacial tills are prepared on the routine basis and 
examined under the polarised light, stereo or electron microscopes. However the terms 
used to describe the till micromorphology are largely subjective and statistically based 
approaches are rare. In the thesis method is develop to analysed the till microfabric, by 
measuring most of the elongated sand grains visible in the thin section. Thus more 
objective parameters of till micromorphology than visual identification of certain 
arrangements of the particles can be determined. 

The investigations of tills are conduced across all scales: the global and regional 
scale for ice sheet and ice lobe perspective; the local and outcrop scales for glaciotectonic 
and glacial dynamic perspective (e.g. Hart, 2006) and the microscale to study the processes 
behind the ice sheet dynamics and till formation. This dissertation falls in the latest 
category – studies of tills in microscale by preparing thin sections and investigating them 
in optical microscope. The apparent (in two-dimensional sections) preferred orientation of 
sand size particles in tills and glacially disturbed sediments is in the focus of this 
dissertation. 

The dissertation is elaborated in the Rock Research Laboratory at Faculty of 
Geography and Earth Sciences of the University of Latvia. 

The motivation 

Most of the till micromorphology studies relay on highly subjective identification 
of existing microstructures. For example, galaxy or rotation structures (Menzies, 2000a; 
van der Meer, 1997) and grain stacks (Larsen et al., 2007) are identified from visual 
assessment of spatial arrangement of few skeleton grains. This approach can easily lead to 
over estimation of abundance of these structures as random sand grain arrangements can 
produce similar structures. Therefore statistically based approach is needed to study the till 
microstructure.  

Carr (1999) suggested a semi quantitative method: comparing the relative 
abundance of all the different microstructures in observed in thin sections from different 
sediment types. Unfortunately the subjective perception and wishful thinking of the 
researcher can affect the results using this approach as well. 

One of the till micro-scale properties that can be statistically analysed in non-
subjective manner is the orientation of elongated sand grains – the microfabric. General 
data about till microfabric in scientific literature is relatively sparse (Chaolu, Zhijiu, 2001; 
Stroeven et al., 2005; Carr, Rose, 2003; Zaniewski, van der Meer, 2005; Roberts, Hart, 
2005; Thomason, Iverson, 2006, 2009), so the need for in-depth analysis of this till 
property is clearly demonstrated.  

It shall be noted that in thin sections only the orientation of apparently elongated 
sand grains can be measured as the true three-dimensional grain shapes is not known 
(Chaolu, Zhijiu, 2001). 
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Hypothesis  

It is suggested that the till microfabric – its preferred orientation, fabric strength 
and especially spatial distribution – hold indications of till formation and thus can be used 
to reconstruct the subglacial process active at the last stages of till formation. 

The aim 

The aim of the dissertation is to study deformation of unconsolidated sediments 
and till formation under active, polithermal to warm-based glacier by analyzing 
microfabric spatial distribution. 

Main tasks 

The main tasks for elaboration of the thesis are: 
1. Comprehensive literature review about till microfabric, its measurement 

methods and best practices of statistical treatment and visualization of 
orientation data in geology to identify most suitable research methods and 
acquire the state of the art understanding about till micromorphology and 
particularly – microfabric. 

2. Implement relevant methods for: thin section image acquisition and processing; 
image analysis tools for measurement the orientation of apparently elongated 
sand grains in thin sections; visualization and statistical analysis of two-
dimensional apparent microfabric data. 

3. To study the microfabric distribution in tills and glacially disturbed sediments 
in four key locations: Sensala site, Plašumi gully site, Strante site and Ziemupe 
site. 

4. To discuss the results, particularly, characterize the nature of microfabric spatial 
distribution in tills and any evidence for identifying till forming processes in 
spatial arrangement of preferred microfabric orientation. 

Theses to be defended 

Theses to be defended are: 
1. The till microfabric – strength, preferred orientation and its distribution – is 

highly variable. It can be strong and consistent unidirectional, generally weak 
and in domains distributed as well as uniformly bidirectional. Generally largest 
grains exhibit strongest preferred orientation, and summary microfabric usually 
is consistent with macrofabric orientation but is generally weaker, especially in 
horizontal sections. 

2. It is suggested that the spatial arrangement of microfabric, for example, its 
arrangement around a gravel grains, can be used to reconstruct the processes 
active during till formation. 

Novelty of the research  

In comparison to other similar studies in the world, this study is distinguished by 
considerably higher level of resolution and volume of acquired data. The microfabric 
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distribution in full thin section area is studied, considering most of the sand grains visible 
that may reach several tens of thousands. 

In the study it is demonstrated that subglacial sediments are characterised by 
diversified microfabric distributions, supplementing and expanding the limits of current 
understanding about till fabrics. On the basis of acquired results it is suggested to analyze 
the microfabric distributions around gravel grains that will help to better understand till 
formation processes. 

Within the scope of the study new method is developed to be used in studies of 
glacial as well as non-glacial sediments in thin sections. The method can be used to study 
such homogeneous materials as tills or, for example, sandstones, acquiring new 
information about the inner structure of these sediments. 

Study region 

The study region is costal plains of western Latvia, particularly bluffs along the 
Baltic Sea, where a sequence of last glacial cycle sediments are widely exposed. The ease 
of access to outcrops, diversity of glacial and non-glacial sediments and their internal 
structure, but most importantly the detail of present examination level of considered 
sequences combined with opportunity to conduce the research compatible to other 
scientific activities going on in the Faculty of Geography and Earth Sciences was the 
contributed in choosing the study sites. 

Approbation of results 

The results of the research are presented in several scientific papers: 
1. Saks, T., Kalvāns, A., Zelčs, V., 2007. Structure and micromorphology of 

glacial and non-glacial deposits in coastal bluffs at Sensala, Western Latvia. 
Baltica 20, pp. 19-27.  

2. Kalvāns. A., Saks, T., 2008. Two dimensional apparent microfabric of the 
basal Late Weichselian till and associated shear zone: case study from 
Western Latvia. Estonian Journal of Earth Sciences 57, pp. 241–255.  

3. Saks, T., Kalvāns, A., Zelčs, V., in print. OSL dating evidence of Middle 
Weichselian age of shallow basin sediments in Western Latvia, Eastern 
Baltic. Quaternary Science Reviews (in print). 

4. Saks, T., Kalvāns, A., Zelčs, V., 2010b accepted for publication. Subglacial 
bed deformation and glacial dynamics of the Apriėi glacial tongue, Western 
Latvia. Boreas (accepted for publication). 

5. Saks, T., Kalvāns, A., Zelčs, V., 2006. Stop 10: Clayey silt diapirs in the 
cliff sections at Ulmale. In: Stinkulis, Ă., Zelčs, V. (compilers), The Baltic 
Sea Geology: The Ninth Marine Geological Conference, August 27 – 
September 3, 2006 Jūrmala, Latvia. Pre-Conference and Post-Conference 
Field Excursion Guidebook, Rīga, University of Latvia, pp. 54-59. 

6. Kalvāns A., Saks T., Zelčs V., 2006, Stop 9: The Baltic Sea cliff section of
glaciotectonically disturbed Weichselian deposits at Gudenieki. In:
Stinkulis, Ă., Zelčs, V. (compilers), The Baltic Sea Geology: The Ninth 
Marine Geological Conference, August 27 – September 3, 2006 Jūrmala, 
Latvia. Pre-Conference and Post-Conference Field Excursion Guidebook,
Rīga, University of Latvia, pp. 49-53. 
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7. Dreimanis, A., Kalvāns, A., Saks, T., Zelčs, V., 2004. Introduction to Stops 
6-9. In: Zelčs V. (ed.), International Field Symposium on Quaternary 
Geology and Modern Terrestrial Processes, Western Latvia, September 12-
17, 2004: Excursion Guide. University of Latvia, Rīga, pp. 35-36. 

8. Kalvāns, A., Saks, T., 2004. Stop 6: The Sensala cliff section. In: Zelčs, V. 
(ed.), International Field Symposium on Quaternary Geology and Modern 
Terrestrial Processes, Western Latvia, September 12-17, 2004: Excursion 
Guide. Rīga, University of Latvia, pp. 37-42. 

9. Zelčs, V., Kalvāns, A., Saks, T., CeriĦa, A., 2004. STOP 7: The Cliff 
Section between Gullies at Plašumi and Gudenieki. In: Zelčs V. (ed.), 
International Field Symposium on Quaternary Geology and Modern 
Terrestrial Processes, Western Latvia, September 12-17, 2004: Excursion 
Guide. University of Latvia, Rīga, pp. 43-47. 

10. Kalvāns, A., Saks T., Zelčs, V., KalniĦa L., 2004. STOP 8: The Cliff 
Section between Ulmale and Jotiėi. In: Zelčs V. (ed.), International Field 
Symposium on Quaternary Geology and Modern Terrestrial Processes, 
Western Latvia, September 12-17, 2004: Excursion Guide. University of 
Latvia, Rīga, pp. 48-53. 

11. Saks, T., Kalvāns, A., Zelčs V., 2004. STOP 9: The Cliff Section at Strante. 
In: Zelčs V. (ed.), International Field Symposium on Quaternary Geology
and Modern Terrestrial Processes, Western Latvia, September 12-17, 2004: 
Excursion Guide. University of Latvia, Rīga, pp. 54-56. 

The results of the research are presented in several international scientific 
conferences as follows: 

1. Kalvāns, A., Saks, T., 2002. Studes of glaciodynamic structures in Sensala 
outcrop. Field symposium on Quaternary geology and Geodynamics in 
Belarus, May 20 – 25, 2002. Grodno, Belarus. Minsk, pp. 26-27. Poster

2. Kalvāns, A., Saks, T., 2002. Studies of glaciodynamic structures and 
formation of glacial sediments in the Sensala outcrop. NorFA seminar. 
Environment and settling along the Baltic Sea coasts through time. 3 – 6 
October, 2002 in Parnu, Estonia. NorFA, pp. 26-27. Poster. 

3. Kalvāns, A., Saks,T., 2004. Till micromorphology and microfabric in the 
Sensala outcrop, Western Latvia. In: Zelčs, V., SegliĦš V. (compilers), 
International field symposium on Quaternary geology and modern 
terrestrial processes, Western Latvia, Spetember 12-17, 2004. Rīga, 
University of Latvia, pp. 24-26. 

4. Kalvāns, A., Saks, T., 2005. Directional and structural analysis of diapir-
like structures at Ulmale site, Western Latvia. International Field 
Symposium on Quaternary Geology and Landforming Processes, 
Proceedings of the International Field Symposium, Kola Peninsula, NW 
Russia, September 4-9, 2005, Apatity, Russian Academy of Sciences, p. 25-
26. 

5. Kalvāns, A., Saks, T., 2006. Sedimentology and structural geology of 
glacigenic sediments in Sensala outcrop, western Latvia. Bulletin of the 
Geological Society of Finland. Special Issue 1, 2006. The 27th Nordic 
Geological Winter Meeting. Abstract Volume. Oulu, p. 65. 

6. Kalvāns A., Saks T., Zelčs V., 2007. 2D analysis of apparent till micro 
fabrics in thin sections: an example from Western Latvia. Quaternary 
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International, 167-168, Supplement 1. Abstracts the XVII INQUA Congress 
2007, Australia, 28 July - 3 August 2007, 0656, p. 200. (0293) 

7. Saks, T., Zelčs, V., Kalvāns, A., 2007.Towards revised Pleistocene 
stratigraphy of Western Latvia, the Eastern Baltic.Quaternary 
International, 167-168, Supplement 1. Abstracts the XVII INQUA 
Congress 2007, Australia, 28 July - 3 August 2007, p. 471 (0656). 

8. Saks, T., Zelčs, V., Kalvāns A., 2009. OSL dating evidence of Middle 
Weichselian age of shallow basin sediments in Western Latvia, Latvia. In:
Exploratory workshop on frequency and timing of glaciations in northern 
Europe (including Britain) during the Middle and Late Pleistocene, 
February 16-20, 2009, Freie Universität Berlin. Deutsche 
Forschungsgemeinschaft, p. 13. Poster

9. Saks, T., Zelčs, V., Kalvāns, A., 2009. A glacial dynamic study of Apriki 
tongue: implications for deglaciation history. In: Kalm V., Laumets L., 
Hang T. (eds.), Extent and timing of Weichselian glaciation southeast of the 
Baltic Sea: Abstracts and Guidebook. The INQUA Peribaltic Working 
Group Field Symposium in southern Estonia and northern Latvia, 
September 13-17, 2009. Tartu Ülikooli Kirjastus, Tartu, pp. 42-43. 

10. Saks, T., Zelčs, V., Nartišs, M., Kalvāns, A., 2009. The Oldest Dryas last 
significant fluctuation of the Scandinavian Ice sheet margin in Eastern 
Baltic and problems of its regional correlation. AGU fall meeting, 14 – 18 
December, 2009. San Francisco, California, USA. Poster.

11. Kalvāns, A., Saks, T., 2010. The spatial distribution of microfabric around 
gravel grains – indicator of till formation processes. EGU General 
Assembly, Vienna, Austria, May 2010. Poster.

The main results of the research are presented in the following local scientific 
conferences: 

1. Saks, T., Kalvāns, A., 2001. Baltijas jūras stāvkrasta glaciotektonisks un 
litoloăisks raksturojums posmā starp Ventas un Užavas grīvām. Krāj.: 
Ăeogrāfija. Ăeoloăija. Vides zinātne. Latvijas Universitātes 59. zinātniskā  
konference. Referātu tēzes. Rīga, Latvijas Universitāte, lpp. 137-138.  

2. Saks, T., Kalvāns, A., 2002. Sensalas atseguma glacigēno nogulumu 
mikrostruktūras. Izd.: Ăeogrāfija. Ăeoloăija. Vides zinātne. Latvijas 
Universitātes 60. zinātniskā konference. Referātu tēzes. Latvijas 
Universitāte, Rīga, lp. 163-165.  

3. Kalvāns, A., Saks, T., 2003. Sensalas atseguma kvartāra nogulumu 
kartēšana un vizualizācija. Izd.: Ăeogrāfija. Ăeoloăija. Vides zinātne. 
Latvijas Universitātes 61. zinātniskā  konference. Referātu tēzes. Latvijas 
Universitāte, Rīga, lp. 155. 

4. Kalvāns, A., Saks, T., 2004. Ledāja nogulumu uzbūve mikro mērogā. Izd.: 
Ăeogrāfija. Ăeoloăija. Vides zinātne. Latvijas Universitātes 62. zinātniskā  
konference. Referātu tēzes. Latvijas Universitāte, Rīga, lp. 143. 

5. Saks, T., Kalvāns, A., 2004. Ledāja dinamika Sensalas atsegumā un tam 
piegulošajā teritorijā. LU Izd.: Ăeogrāfija. Ăeoloăija. Vides zinātne. 
Latvijas Universitātes 62. zinātniskā  konference. Referātu tēzes. Latvijas 
Universitāte, Rīga, lp. 164.  

6. Saks, T., Kalvāns, A., 2005. Diapīru izvietojuma likumsakarības 
Rietumlatvijas piekrastes teritorijā. Izd.: Ăeogrāfija. Ăeoloăija. Vides 
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zinātne. Latvijas Universitātes 63. zinātniskā  konference. Referātu tēzes.
Latvijas Universitāte, Rīga, lpp. 141-142. 

7. Kalvāns, A., Saks, T., Nartišs, M., 2006. Smilts graudiĦu orientācija ledāja 
nogulumos: problēmas pamatojums, pētījumu metodes un piemēri no 
Rietumlatvijas. Izd.: Ăeogrāfija. Ăeoloăija. Vides zinātne. Latvijas 
Universitātes 64. zinātniskā  konference. Referātu tēzes. Latvijas 
Universitāte, Rīga, lpp. 174-175. 

8. Kalvāns, A., Saks, T., Zelčs, V. 2006. Pleistocēna nogulumu 
struktūrăeoloăija Baltijas jūras stāvkrastu atsegumos Ziemupes apkārtnē. 
Izd.: Ăeogrāfija. Ăeoloăija. Vides zinātne. Latvijas Universitātes 64. 
zinātniskā  konference. Referātu tēzes. Latvijas Universitāte, Rīga, lpp. 176-
177. 

9. Kalvāns, A., Saks, T., Klimovičs, J. 2007. Subglaciālas bīdes joslas 
mikromorfoloăija: piemērs no Ziemupes stāvkrasta. Izd.: Ăeogrāfija. 
Ăeoloăija. Vides zinātne. Latvijas Universitātes 65. zinātniskā  konference. 
Referātu tēzes. Latvijas Universitāte, Rīga, lpp. 148-149. 

10. Kalvāns, A., Saks, T., 2007. Glaciodinamiskās struktūras un ledāja 
dinamika Ziemupes stāvkrastā. Izd.: Ăeogrāfija. Ăeoloăija. Vides zinātne. 
Latvijas Universitātes 65. zinātniskā  konference. Referātu tēzes. Latvijas 
Universitāte, Rīga, lpp. 146-147. 

11. Kalvāns, A., Stinkulis, Ă., Klimovičs, J., Popovs, K., 2007. Iežu un 
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Symbols 

The symbols used in thin section sketched images and microfabric distribution 
representation is summarised respectively in table 1 and table 2; most significant used 
abbreviations are collected in the table 3. 
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Table 1 Symbols used in sketched thin section images 
1. tabula. Skicētajos plānslīpējumu attēlos izmantotie simboli 

Symbol Explanation  Symbol Explanation 
A silt or diamicton with 
contrasting content inclusion 
in till 

Boundary between different 
lithologies 

A gravel grain  

A line indicating structure 
formed by the microfabric 

A scale, in a case of regular rose 
diagrams corresponding to 300 
measurements evenly spread 
across sector of 30° (used in the 
Ziemupe site description) 

Table 2 Symbols used for microfabric distribution visualization 
2. tabula. Mikrolinearitātes vizualizācijai izmantotie simboli

Title Strong 
fabric 

Weak 
fabric 

Method 

Rose 
diagrams 

Rose diagrams, with mode length proportional to 
the square root of the actual number of 
measurements in a single class. The fabric 
strength is evaluated by calculated the length of 
normalised resultant vector (Rn; Davis 2002, 
p.322-330) and compared to critical values for 
0.9 confidence level given by Davis (2002, p. 
619) and indicated by green (dark grey in B& 
images) colour in case of strong fabric and grey 
in case of weak colour. 

Density plot 
with summary 
orientation 

Density plot of data distribution as used by 
Fisher et al (1985) – each line in diagram 
represents single measurement and its length 
represent the inverse of relative spacing between 
adjacent measurements. Normalised resultant 
vector Rn is given as a green or grey single line 
for strong or weak fabric respectively. The fabric 
strings is evaluated as in case of Rose diagrams 

Density plot 
with 
eigenvector 
indicated 

Density plot of data distribution as used by 
Fisher et al (1985) – each line in diagram 
represents single measurement and its length 
represent the inverse of relative spacing between 
adjacent measurements. The single outstanding 
line is summary orientation – mean clustering 
direction (V1 – eigenvector) – as in Thomason 
and Iverson (2006). The different levels of 
darkness of summary orientation represent the 
relative fabric strength (S1 - eigenvalue). 
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Table 3 List of used abbreviations 
3.tabula. Izmantoto saīsinājumi saraksts 

Abbreviation Term Explanation 
R Radius Distance between grid points in the images of the 

microfabric spatial distribution; with term “grid point” is 
understood the point that coincide with centre of 
microfabric diagram in the thin section image and 
simultaneously are in the centre of the thin section area 
from what the data are collected composing the respective 
diagram. 

V1 First 
eigenvector 

indicating the direction of strongest clustering both for two 
dimensional and three dimensional data 

S1 First 
eigenvalue 

indicates the strength of clustering around the direction of 
strongest clustering (V1) 
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1. Subglacial environments and till micromorphology 

The subglacial environment is place where most tills are formed and hence tills 
could bear some clues about the environment itself. Behaviour of ice sheets is largely 
controlled by the subglacial environments and reconstructing the subglacial environments 
of large past glaciers will contribute to the modelling efforts of development of the 
Pleistocene glaciations and understanding of the Erath climate evolution. 

In “classical” sedimentology the term microfabric is used to describe arrangement 
of clay-size particles (e.g. Reynolds, Gorsline, 1992; Kuehl et al., 1988) or silt size 
particles (e.g. Francus, 1998, 2001). Mean while in glacial geology probably due to works 
of van der Meer who adopted terminology used in soil science the term plasmic structure 
or plasmic fabric is used to describe arrangement of clay-size particles. The term 
microfabric in glacial geology is more often used to refer to orientation of sand size 
particles (e.g. Evenson, 1970; Johnson, 1983). Hens in this study with term “microfabric” 
the preferred orientation of elongated sand grains will be understood. 

It is understood that in thin sections only apparent microfabric can be observed. 
This is due to obvious fact that thin section is two-dimensional (2D) sections of three-
dimensional (3D) till fabric (e.g. Chaolu, Zhijiu, 2001). For this reason sand grain 
appearing in thin section as elongated can actually be tabular or even cubic in three 
dimensions and but rod-shaped grains can appear spherical if the thin section plane is 
perpendicular to the longest axis of the grain. In the dissertation terms apparent microfabric 
and microfabric, if not stipulated differently, will be used as synonyms, understanding that 
only apparent microfabric can be directly measured in thin sections. 

In this chapter first the geological background about study site are presented 
followed by review of the current scientific understanding of subglacial environments and 
associated till fabric in general. This includes short review of theoretical and experimental 
works on fabric formation in sheared granular materials like most tills probably are. At the 
last part of chapter short review of literature about till micromorphology and 
comprehensive review of available literature about till microfabric is give. 

1.1. Pleistocene sediments in Western Latvia 

At the study area up to 80m thick patch of glacial and basin sediments are 
presented. It is an extension of huge Quaternary deposit sequence at the depression of 
Baltic Sea (Juškevičs et al., 1997, 1998). The sedimentary sequence presents a rare 
opportunity for investigating the Quaternary history and the development of continental 
glaciations originating in Scandinavia.  

The upper part of this section is exposed in about 10-18 m high bluffs between 
city Ventspils and the town of Liepāja. Dreimanis (1936) first studied coastal bluffs in the 
region along their entire length of more than 40 km, with main attention paid to the till 
layers and the orientation of the glaciotectonic deformation structures. He identified two 
till layers – grey and bluish grey – interbedded or underlain by stratified sand, silt, clay or 
gravel and assigned them to the penultimate glaciation. Since then the territory has been 
frequently revisited by numerous researchers: Ulsts, Majore, 1964; Konshin et al., 1970; 
Veinbergs, Savvaitov, 1970; Danilāns, 1973; Meirons, Straume, 1979; SegliĦš, 1987a; 
KalniĦa et al., 2000; KalniĦa, 2001; Saks et al., 2007 and others. They mostly focused on 
startigraphicla investigations attempting to establish the formation history of presented 
sequence.  



- 17 -

During several campaigns of geological mapping of the Western Latvia, 
numerous boreholes have been logged, revealing complex succession of glacial and 
interglacial sediments as summarised in figure 2. The Quaternary sequence in the coastal 
area, according to borehole logs, is up to 70 m thick (Juškevičs, 1998).  

The study area is located on the north eastern slope of the Baltic bedrock 
depression. The bedrock surface is dipping from 20 m in the southeast at the foot of 
Western Kursa upland down to 60 m below sea level near the sea coast with regional 
inclination 3.3 m/km to WNW. The bedrock surface is intersected by several 
paleoincisions, reaching up to 100 m below present see level (Juškevičs et al., 1998). The 
bedrock is formed by layered sequence of Middle Devonian sandstone, dolomitic marl, 
clay, dolomite and gypsum and overlaid by thick cover of Quaternary glacigenic, 
glaciofluvial, glaciolacustrine, lacustrine and marine deposits (Meirons, Straume, 1979; 
Juškevičs et al., 1998).  

The recent landscape of the mainland area is gently undulated sandy abrasion-
accumulation plain of the Baltic Ice Lake to some extent altered by postglacial aeolian 
activity (Veinbergs, 1964). 

1.1.1. Sedimentology and stratigraphy 

In the patch of Quaternary sediments three glacial sediment levels, interlayered by 
warmer period marine silt and sand sediments are distinguished (KalniĦa et al., 2000). At 
the very bottom reddish brown till is covering Devonian sandstones, earlier interpreted as 
Elsterian (Lētiža) till (Danilāns, 1973; KalniĦa et al., 2000). This till unit is observed in 
most of the boreholes and usually it is 2-3 m thick.  

The lowermost till is topped by some 25 – 30 m of silt and sandy silt sediments. 
The bottom of this sequence is mostly fine grained – silt, clayey silt and clay sediments 
rich in organic matter; the upward coarsening is observed (SegliĦš, 1987b). Based on the 
macro faunal and palynological findings, this sedimentary sequence has been correlated 
with Pulvernieki (Holstenian) interglacial stratigraphic unit (Danilāns, 1973; SegliĦš, 
1987b; KalniĦa et al., 2000; KalniĦa, 2001). However, no reliable absolute datings are
available to prove previous interpretations, and other opinions exist on interpretation of the 
palynological and diatom records: Charamisinava (1971) based on diatom findings she 
correlated this silt sediment sequence to Eemian interglacial. Later Meirons and Straume 
(1979) doubted palynological data resemblance to Pulvernieki (Holstenian) type site, 
suggesting that pollen successions are more similar to Felicianova (Eemian) pollen record. 
Saks et al. (in print) have speculated that this sequence is of Eemian or Early Weichselian 
age. 

The silt sediments are discordantly covered by thin, patchy till and glaciofluvial 
sediments, situated approximately in the middle of the Quaternary sediment body. The till 
is mostly rewashed and susceptible just in few boreholes, and probably in some outcrop 
sections (Fig. 1 and 2). However it is not always recognised as a separate unit (Juškevičs et 
al., 1998).  

The top of quaternary sediment sequence is formed by silty sand and sand 
sediments with clay rich silt sediment interlayers covered by one or two till layers. The silt 
sediments in this level are often heavily dislocated due to diapirism and it is difficult to 
estimate correctly their initial position, distribution and thickness. The base of sandy 
sediments is approximately 20 m below present sea level (Fig. 2) and the upper part of it is 
outcropping in the coastal bluffs. This sedimentary sequence usually is correlated either 
with late Holstenian (Pulvernieki) or early Saalian time (Danilāns, 1973), or Eemian time 
(KalniĦa, 2001), marked as Jūrkalne formation (SegliĦš, 1987b). However the new OSL 
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datings have demonstrated the Late Weichselian age of these sediments (Saks et al., in 
print). 

Till layer at the top of the Pleistocene sequence earlier correlated to Saalian age 
(Danilāns, 1973; KalniĦa et al., 2000) or a composite of Saalian and late-glacial till 
(Juškevičs, 1998, geological sections to Map of Quaternary Deposits). Its thickness varies 
being on average 2 m and reaching up to 7-8 m. The top of the till is eroded by Baltic Ice 
Lake, so in many places boulder pavements and Baltic ice lake sandy sediments are present 
instead of the till. The two-layer interpretation has been introduced by Dreimanis (1936), 
who assumed penultimate (Saalian) age of the upper till unit exposed in the Baltic Sea 
coastal outcrops. With limited critical evaluation this suggestion was preferred in later 
works by Konshin et al. (1970), Danilāns (1973), Juškevičs et al., (1998) and others. This 
interpretation of the upper till has led to conspicuous situation, where main constituent of 
the Western Kursa upland is considered Saalian till, and Weichselian till plays only minor 
part in the Quaternary sequence (Meirons and Straume, 1979). The newest OSL datings 
and geomorphological investigations have revealed that the till is formed by the latest 
glaciation (Saks et al., 2007, in print, accepted for publication). SegliĦš (1987a) 
summarising the results of large number of grain size analysis concluded that the Late 
Weichselina (Latvian) till in western Latvia have predominantly of polimodal grain size 
distribution with dominat fractions of fine sands (0,25-0,1 mm), fine silt (0,02-0,01 mm) 
and clay (< 0,002 mm), with fine silt mode being the most prominent. 

1.1.2. Structural geology 

From the structural geology perspective only the upper part of Pleistocene 
sediment sequence which is outcropping in the coastal bluffs, has been described. The 
structural architecture is dominated by glaciotectonically deformed three-layer system – 
the silt and clay sediments at the bottom, sandy sediments in the middle part and till at the 
top – complicated with density-inversion and glaciotectonically induced structures.  

In general, all glaciotectonic deformation structures are attributed to deglaciation 
phase of the last Scandinavian ice sheet, when ice in the area was distributed in to active 
glacial tongues and areas of dead, probably frozen to its base ice (Zelčs, Markots, 2004). 
Two different sets of glaciotectonic assemblages have been described: Glaciotectonic 
structures associated with marginal position of the glacial tongues, and glaciotectonic 
structure assemblage associated with central parts of the glacial tongues. The marginal 
glaciotectonic structures include unidirectional thrusting and/or folding, with 
compressional stress direction being at the right angle to the overall glacial movement 
direction.  

Deformation in the central parts of the glacial tongues comprises uplifted diapir 
structures, and accumulation of the till in inter-diapir spaces. Unlike in marginal position, 
glaciotectonic deformation of the subglacial sandy sediments is characterized mostly by 
vertical translation (rising diapirs and sinking inter diapir spaces), with little internal 
deformation.  

Gaigalas et al. (1967) emphasized that during the last glacial maximum in the 
study region the glacier advanced from NNW direction out of the Baltic Sea depression 
which is supported by the palaeoglaciological reconstruction of the Scandinavian ice sheet 
dynamics through the Weichselian glacial cycle (Punkari, 1997; Boulton et al., 2001a; 
Zelčs, Markots 2004; Saks, et al., 2007; Saks et al., accepted for publication).  
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1.2. Subglacial environment 

There are vast literature on subject of subglacial environments, in fact most 
studies of till or glacial geomorphology are in some extend concerning the subglacial 
environment as well. Some of these studies are Glen et al. (1957); Dreimanis (1973, 1981, 
1989), Stephan (1989), van der Meer et al. (1992, 2003), van der Meer (1993; 1997), Benn 
(1994), Wright (1995), Boulton (1996), Boulton et al. (2001b), Hart (1996, 1998), Hart et 
al. (2004), Hicock et al. (1996), Kjær and Krüger (1998), Alley et al. (1997), Hindmarsh 
(1997), Murray (1997), Piotrowski et al. (2001, 2006), Piotrowski, Kraus (1997), van der 
Wateren (1995, 1999), van der Wateren et al. (2000), Hiemstra and van der Meer (1997), 
Hiemstra and Rijsdijk (2003), Knight (1999), Waller and Hart (1999), Hindmarsh and 
Rijsdijk (2000), Hambrey et al. (1999), Carr (1999, 2001), Carr et al. (2006), Lachniet et 
al. (1999, 2001), Hambrey and Lawson (2000), Alley (2000), Menzies (2000a, b), Menzies 
and Taylor (2002), Menzies et al. (2006), Filler and Murray (2000), Fitzismons et al. 
(2000), Knight et al. (2000), Phillips and Auton (2000), Siegert (2000), Chaolu and Zhijiu 
(2001), Ruszczynska-Szenajch (2001), Hoffmann and Piotrowski (2001), Larsen and 
Piotrowski (2003), Larsen et al. (2004, 2007), Mccarroll and Rijsdijk (2003), Millar and 
Nelson (2003), Roberts and Hart (2005), Thomason and Iverson (2006, 2009), Hiemstra et 
al. (2006) and many others. 

In short it is agreed that there is few dominant process that result in till formation 
(Table 1.1). It is agreed that rarely any of these process are acting alone (e.g. Piotrowski et 
al., 2006), there is continuum among them (e.g. Hart, 1998) and till is the result of complex 
development history and only the last stages of till formation might be reflected in its 
structure and texture (e.g. Larsen et al., 2004). It should be noted that till is formed as
result of extremely complex interaction of processes connected to glacial dynamics, 
sediment availability, frost action, meltwater action, periglacial environment among which 
the movement of active glacial ice is the single most significant and genetically indicative 
process (e.g. Dreimanis, 1989). The described processes have to be seen as end members 
of the continuum (Dreimanis, 1989; Evans et al., 2006).  

It should be noted that some researchers point out that all of the tills have to have 
undergone some deformation in inter-grain scale (van der Meer et al., 2003; Piotrowski et 
al., 2004). Some researchers even call for total re-interpretation of till classification taking 
into account that in all tills micro-scale deformation structures can be observed (Menzies et 
al., 2006). They argue that the best way to describe subglacial till is to call it glacial 
“tectomict” (ibid, see also Evans et al., 2006). 

Piotrowski et al. (2004) argues that subglacial till is formed as a cumulative effect 
of the local deformation spots of glacial bed and ploughing of boulders entrained in ice. 
The glacial bed is suggested to be in time changing mosaic of deforming and stabile 
sediments. The ploughing of clasts thru the glacial bed is in agreement with Colombo-
plastic rheology. They express a light scepticism about whether till micromorphology can 
be used to infer information about glacier-scale processes as all tills in micro-scale will 
exhibit some inter-grain movement and it will be more pronounced as the scale gets 
smaller.  

The discussion among scientist are ongoing witch mechanisms of till formation 
and associated subglacial conditions are most dominant (e.g. Iverson et al., 2003).   

There is a view that many visually massive subglacial tills are a two-tear system, 
upper part being unconsolidated, with large water content and the lover part being highly 
consolidated and dense (e.g. van der Meer et al., 2003; Evans et al., 2006). The upper part 
is supposed to undergo penetrative deformation under active ice whilst the lover part 
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remains stable. This structure may be partly due to ploughing of boulders through the 
upper par of a till (Tulaczyk et al., 2001). 

Table 1.1 The summary of processes involved in till formation 
1.1. tabula. Kopsavilkums par morēnas veidošanās procesiem 

Process Description Selected references 
Melt-out Slow melting of dead ice (stagnant) ice at

the base due to geothermal heat flux or other 
heat sources resulting in gradual release of 
debris entrained in glacier. 

Dreimanis (1989) 

Soft and hard 
lodgement and 
ploughing 

Melting-out particles from the base of the 
active ice are pressed against the substratum 
and eventually cease to move – decouple 
form the glacier.  
Sometimes soft and hard lodgement tills are 
distinguished given the amount of 
deformation that lodged particles have 
exerted on the substratum (usually till 
itself). 
The process of ploughing is the dragging of 
larger casts partly protruding from the 
glacier base through the underlying till layer 
introducing significant amount of 
deformation in the till. 

Dreimanis (1989), 
Ruszczynska-Szenajch 
(2001), Tulaczyk et al. 
(2001) 

Deformation of 
glacier bed  

This is process when significant proportion 
of glacier movement is realised by 
deformation of sediments in its base. 
Sediments eventually are homogenised 
forming till. 

Benn and Evans (1996); 
Boulton (1996) 

Precipitation in 
water 

If the glacier is overriding a body of water 
and due to meting at the base debris is 
released and regimented through the water 
column the waterlain till is formed. 

Dreimanis (1989) 

1.3. Shear zone development in granular material  

In last decades the awareness of scientists on the role of soft sediment 
deformation in till formation has gradually raised from slight scepticism as demonstrated 
by Dreimanis (1989) to perception that all tills has undergone some deformation, 
particularly in the microscale, as concluded by Piotrowski et al. (2004). In this light the 
understanding of deformation process and its influence on particle orientation, which is in 
focus of this study, is crucial. Therefore, before focusing on the till fabric, the theoretical 
and experimental work about sheared granular materials should be briefly discussed. 

In a simple approximation the subglacial deformed sediments are subject to 
simple shear in a continent-scale shear zone – the base of glacier (e.g. Boulton, 1996). 
However the deformation there is rather complex and variable in time and space, 
including, slipping of ice base over rigid bed, shearing of basal sometimes debris-rich ice 
itself, shearing of soft basal sediments, differentiated shearing of soft or partly frozen basal 
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sediments and ploughing of boulders partly frozen in the base of ice as recently was 
reviewed by Evans et al. (2006). Therefore it is necessary to remember that experimental 
(and theoretical as well) studies only partly resembles the deformation process imposed by 
moving glacier on its bed. 

One of the first who mathematically described the behaviour of elongated particle 
immersed in viscous media was G.B. Jeffery (1922). The significance of his work is 
underlain by the fact that hardly any scientific paper dealing with the alignment of rigid 
elongated particles in deforming media is not referring to his pioneering work. It is worse 
noting that Jeffery (1922) says that he extended the work of Albert Einstein himself who 
described the increase of viscosity of liquid with immersed spherical particles. Jeffery 
suggested that particles immersed in viscose fluid that is undergoing laminar motion 
(simple shear) will periodically rotate with their axis aligned perpendicular to motion 
plane. Jeffery admits that his equations ignore the velocity gradients introduced by particle 
in sheared liquid and this is resulting in an uncertainty that can lead to preferred lodgement 
of particle axis along the direction of motion. Despite the probable alignment of particle 
axis the rotational movement of particles is expected to continue at any time during the 
shearing.  

Latter March (1932) proposed competing theory – he suggested that rigid particles 
in deformed media will attain preferred, steady state orientation and will remain there as 
long as conditions do not change.  

The two models usually are referred as Jeffery’s models and March’s model and 
this practice are followed there as well. The difference between March and Jeffery models 
is the character of particle surface-liquid (deforming media) interface. The Jeffery’s model 
assumes no sliding on the interface; the March model – expects that sliding along the 
particle surface will occur. The rotation of particle in sheared media is induced by the 
traction of the flowing matrix on the surface of the rigid particle and the force of traction 
will be fundamentally different in case when the particle surface will be well lubricated 
(layer with smaller viscosity than the average matrix separating the particle from matrix). 

The complex history of till development and the presence of all-size closely 
packed grains will significantly complicated the development of preferred orientation of 
elongated particles. As suggested by Carr and Goddard (2007) till fabric can not be 
explained neither by Jeffery nor March models as most experimental studies favour the 
March model but it does not explain the b-lineation often observed in a field. Therefore 
two basic mechanisms must be kept in mind in any study of preferred orientation of 
elongated particles in tills.  

As suggested by recent studies most significant factors affecting preferred 
orientation of elongated particles in shear zone are interaction with other particles, the 
character of particle/matrix interface and the shear rate (the amount of displacement 
accommodated in the shear zone). The initial orientation of particles significantly controls 
the preferred alignment after the shear only in cases when shear rates are relatively low, 
interaction of particles is negligible and the particle/matrix interface is cohesive e.g. not 
lubricated. 

Probably the first significant experimental work on high strain shear zone 
development in granular materials is that one of Mandl et al. (1977) who published results 
of extensive experiments with ring-shear apparatus started already in 1969. The ring-shear 
apparatus in contrast to standard geotechnical testing equipment can accommodated large 
strain rates and thus effects of prolonged shearing on geological materials can be studied. 
The first experimental work on the behaviour of elongated particles in sheared media 
however is dating back to beginning of previous century: Glen et al. (1957) is referring to 
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the experimental work of Tailor published in 1922, who studied behaviour of elliptic 
particles immersed in liquid glass and sheared between two rotation cylinders. 

The particle/matrix interface is a key element in determining whether the particle 
in sheared media will behave according to Jeffery or March models. The contrasting 
behaviour of particles with sticky surface and well lubricated surface is demonstrated by 
the experimental studies. In ring-shear experiments of Ceriani et al. (2003), and Hooyer, 
Iverson (2000) rotation of elongated particles immersed in viscous, sticky gel corresponded 
well to theoretical calculations according to Jeffery’s model. In case of well lubricated 
particles (using liquid soap) with initially horizontal position, antithetical rotation to 10-20° 
dip against the shear direction was observed (Mandal et al., 2005a, 2005b; Ceriani et al., 
2003) corresponding to March model. Additionally if the interface is lubricate elongated 
particles will tend to rotate more quickly compared with the case of non-lubricated 
interface (Mandal et al., 2005a). Hooyer and Iverson (2000) found that clasts embedded in 
till displayed rotation behaviour that was more similar to March model, however, the 
orientation of clasts did not followed the theoretical prediction as close as in case of putty. 

The stabile state orientation of 10-20° with lubricated particle/matrix interface 
corresponds to observed dip of preferred orientation of elongated pebbles in till (e.g. 
Dreimanis 1989; ĀboltiĦš, Dreimanis, 1995). 

Particle elongation predominantly controls the swiftness of it reaction to shearing, 
but not the steady state orientation when it is attained. Cañón-Tapia, Chávez-Álavarez 
(2004) mathematically calculated the behaviour of elongated particles in sheared media 
according to Jeffery’s theory. They found that in most geological settings elongated 
particles (short axis/long axis ratio ≤ 0.5) will attain steady state preferred orientation after 
strain rate of 4 to 10, that is close to somewhat large values (7-39) observed by Thomson 
and Iverson (2006) in their ring shear experimental studies of tills. However, Cañón-Tapia 
and Chávez-Álavarez (2004) saying “most geological settings” understood emplacement of 
various forms of magmatic rocks.  

The interaction with other particles obviously is important in determining the 
steady state orientation. In physical model it is observed that denser populations of rigid 
elongated particles immersed in viscous matrix are reacting more swiftly to shearing and 
faster attain steady state orientation even if particle collisions is absent and antithetical 
non-linear rotation can be observed (Mandal et al. 2005b). This indicates that tills with 
large pebble and gravel-size grain content will have stronger preferred macro fabric 
orientation. In the field it is observed that glaciotectonically deformed gravel has stronger 
preferred orientation of skeleton grains than the diamicton does (Saks et al., 2007) 

Rosas et al. (2002) modelling the behaviour of parallelepiped-shaped amphibole 
crystals in shear zone in marble observed formation of the sheath folds above and below 
rotating intraclasts. This process inevitably has to affect the orientation of smaller particles 
which happens to be near the larger ones. Similar sheath-fold-resembling microfabric 
observed in till thin sections would be reliable indicator of particle rotation and hens the 
deformation of examined till. The similar configuration of microfabric around the rotating 
grains in deforming till was suggested by Thomason and Iverson (2006).

The strain rate or relative amount of shear accommodated in sediments 
undoubtedly is on of the most important factors contribution to fabric, including 
microfabric development. Large strain rates gives more time for particles to rotate to 
steady state orientation and the fabric strength is growing with increase of strain rate. 
However after certain threshold amount of strain is accumulated in sediments the fabric 
strength attains a steady state value that does not change with increased strain (Hooyer, 
Iverson, 2000; Thomason, Iverson, 2006). 
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The Riedel shears are associated with most of the shear zones and their presence 
will affect any small particles in their vicinity. For example, after prolonged shearing of 
sugar immersed in kerosene (to mimic the brittle behaviour of sand grains in natural shear 
zones but in smaller confining pressures), Mandl et al. (1977) observed sudden collapse of 
gradually widening shear zone to a single plane and a classical slickenside was produced 
with echelon or Riedel shear type slips dipping in direction of shearing at 20-25°.  

Thomson and Iverson (2006) found in ring shear experiments with tills that two 
sets of Riedel shears (R1 and R2) manifested as latisepic plasmic fabric developed – the 
R1 having low angles (~25°) against shear plane and R2 – wide angles (~75°). The suggest 
that most of the shear displacement was accommodated in Riedel shears and the particle 
preferred orientation can be explained as a result of competing action of both Riedel shear 
directions.  

Kock and Huhnet al. (2007) used discrete element mathematical modelling 
method to determine behaviour of elongated clay and silt particles in shear box conditions. 
The model was run up to 200% of strain. After ther experiment dip direction of most of 
particles was between minus 10° to plus 40° towards shear direction. Authors found that 
most of the local shear planes were deviated from horizontal direction usually no more 
than 20°. Exception was the case with spherical particles where several, equally strong, 
shear-plane orientation modes deviating form zero up to 50° were observed. 

The slip localization in shear zone apparently can produce a plane of parallel-
aligned elongated grains. The experimental studies with sufficiently large confining 
pressure to allow grain fracturing, sometimes result in slip localisation in single slickenside 
(e.g. Mandl et al., 1977). However in other cases no shear localisation was observed, for 
example Mair, Hazzard (2007 in case of mathematical modelling. They argued that an 
analogue experimental study that shown shear localisation when the stress was sufficient 
for grain fracturing to occur, but in cases when stress was not sufficient for grain breaking, 
localised shear planes usually did not develop, as observed in their mathematical model. 

Mandl et al. (1977) observed grain size segregation according to gravitational 
field – smaller particles tended to sink and large particles to float in case when the pore 
fluid was not as dense as the particles were and opposite effect when pore fluid was denser 
than the rigid particles. They report that similar particle behaviour have been observed in 
the field as well. Similar mechanism of formation of boulder pavements in subglacial tills 
has been suggested elsewhere.  

In sheared granular media the formation of grain bridges that supports most of the 
shear resistance was observed already by Mandl et al. (1977). Rechenmacher (2006) used 
digital image correlation (DIC) technique to observe the emergence of shear zone in 
triaxila tests of granular materials. He fond that in “matured” shear zones the local strains 
was highly non-uniform but it seems to suggest periodic pattern. He argued that this 
observation corresponded well with buckling of grains – forming of grain bridges 
suggested by others. Mair and Hazzard (2007) in three dimensions (3D) mathematicaly 
modelled found that in case of well sorted materials grain bridges (or force chains) were 
approximately oriented in direction of deformation and inclined some 50º from the plane of 
deformation; in case of unsorted material (like tills) grain bridges were significantly 
diverging from the direction of shear and much more branched than in the former case. 
Thus more chaotic orientation of elongated grains in diamictic materials could be expected 
in comparison to well sorted materials. 

Hooyer and Iverson (2000) claimed to presented the first report – on experimental 
studies of clast alignment in pervasively deformed till with high shear strain. They used a 
ring-shear apparatus and experimented with linear-viscosity putty as well as diamicton 
samples. The clasts embedded in putty, in no-surface slip environment displayed a rotation 
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behaviour as predicted by Jeffery (1922), in contrast clasts embedded in till displayed 
rotation behaviour that is more similar to that predicted by March (1932). However, the 
orientation of clasts did not follow the theoretical prediction as close as in case of putty. 
These results are in good agreement with other experimental studies with rigid particles 
immersed in plastic putty and lubricated surfaces (Cañón-Tapia, Chávez-Álavarez, 2004; 
Mandal et al., 2005a). Hooyer and Iverson (2000) concluded that the strong till 
macrofabric was an indication of deformation till with considerable strain rate (5 or 
greater), that opposite to long standing perception that characteristic feature of deformation 
till was weak till fabric. They argued that many macroscale and microscale deformation 
features such as folds, shear bands, rotation structures could develop both in cases when 
strain rate from glaciological point of view was insignificantly small – 1 to 10 or in cases 
of significant strain rate exceeding 100, 1000 or 10000. The strong macrofabric would 
evolve gradually and remain stable and strong as long as shearing was continued. Benn 
(2002) strongly criticized the Hooyer and Iverson (2000) for exaggerating the significance 
and novelty of their findings, as similar thoughts have been expressed by other researchers 
before. Benn (2002) stressed that it has been demonstrated in the field that deformation 
tills could have significant local variations in fabric strength and local conditions such as 
pore water drainage and till volume changes could significantly affect the local fabric 
strength, nevertheless he did not dispute the validity of findings of Hooyer and Iverson 
(2000). 

1.4. Till fabric  

The till fabric is defined as preferred orientation linear features of the till, that 
include the surface morphology of the till or its constituents, orientation of voids and 
fractures, arrangement of particles in the till, orientation of elongated or oblate particles 
and other anisotropic properties of the till. Most often the orientation of the elongated 
particles in the till is measured to determine the till fabric. 

It is possible to distinguish megafabric, macrofabric and microfabric. The first 
being mostly orientation of glacier relief forms, the second – orientation of elongated 
pebbles and other structures of similar size and the latter is structural properties of sub-
millimetre size, such as intergranular voids and orientation of elongated sand-size or silt-
size particles. 

The till microfabric is rather specific and relatively undeveloped field of research, 
therefore, to attain a better notion about the till fabric, macrofabric, of which many aspects 
are similar to the microfabric, will be considered in this chapter. 

The till fabric is on of the most important till parameters measured in 
paleoglaciological studies. Already early workers suggested that it could be used as 
reliable ice flow direction indicator, however it was difficult to extract more information as 
it was influenced by many different factors (Glen et al., 1957). Glen et al. (ibid) suggested 
that there were three main groups of till fabric sources: (1) incorporation of particles in the 
ice, (2) ice flow itself and (3) sedimentation of particles out of the ice with following soft 
sediment deformation. 

On the basis on earlier works Glen et al. (1957) suggested that in the glacial ice 
particles behaved according to the Jeffery’s model (see below) although the exact nature of 
ice flow was not known. They proposed that particles with elongation ration less than 1.5 
would attain b-orientation. Glen et al. (1957) noted that collisions between particles in
dens populations would ledwould led to development of the most energy efficient 
orientation – b-lineation. That is elongated particles with longest axis and tabular particles 
with shortest axis aligned according in plane of shearing and perpendicular to shear 
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direction. However this notion can be disputed as many studies have demonstrated that 
tabular particles tends to lie in the shearing plane with shortest axis oriented normally to 
the shearing plane (e.g. Chaolu, Zhijiu, 2001). 

Referring to the paper of Holmes published in 1941 Glen et al. (1957) suggested 
that ice/sediment interface would be powerful clast re-orientation factor. The long axis or 
most profound edge of clasts would be aligned parallel to ice flow direction.  

Glen et al. (1957) concluded that pebbles in tills would be aligned with their long 
axis either parallel or transverse to the ice-flow direction. They said that the ice flow 
direction could be reconstructed from the till fabric however it was difficult to extract any 
other information about till formation as there were to many factors contributing to the 
preferred alignment of elongated pebbles. 

Lindsay (1970) presented a study of Permian tillite fabric and concept of how till 
fabric was formed by englacial deformation of sediment rich ice, deposition by lodgement 
and rolling or sliding of pebbles. He outlined that there might be fabric parallel to ice 
movement produced by sliding of clasts and fabric transfers to ice movement produced by 
rolling of clasts.  

Li et al. (2006) studied macrofabric of glacial deposits in the Upper Urmi River 
valley, Tian Shan, China. They found that clast a-b planes had stronger fabric than the a-
axis did. Additionally the a-axis fabric was at large no-right angles to the former ice flow 
direction. They emphasised the influence of glacial bed relief on the till fabric: smooth bed 
resulting in consistent, strong fabric and rough bed resulting in highly variable and weaker 
fabric. 

Carr and Goddard (2007) reviewed the literature on till macrofabric and 
microfabric and concluded that there were several questions that have not been addressed 
in till fabric studies: the suitability of eignevalue vector analysis method for studies of till 
genesis had been questioned; there were surprisingly little work done on the methodology 
of fabric analysis; there was no common understanding of fabric strength for different-
sized particles. They studied the orientation of different-size particles in the field and in the 
horizontal thin sections. They found that the preferred orientation was contrasting for 
different-size particles and only the larges measured fraction (longest axis length 16 to 32 
mm) corresponded to known local glacial stress direction. 

Hart (1994) reviewed the macrofabric of deformation till and gave characteristic 
S1 and S3 eigenvalues for till fabric eigenvector analysis for various till types. She 
concluded that at low strains strong fabric should develop as a result of combination of 
melt-out and shearing. In contrast in high strain environment weaker strain-parallel fabric 
would develop largely due to partial transverse orientation of some of the pebbles. 
Additionally thin deforming layer would have stronger fabric and thick deforming layer – 
weaker. These findings have been later challenged by other researchers (e.g. Hooyer, 
Iverson, 2000) suggesting stronger till fabric for deformation till than other till types. 

Dowdeswell, Sharp (1986) investigated the till fabric of modern glaciers using 
over 100 fabric measurement sets. They found that there was a general reduction in fabric 
strength and an increase in particle dip associated with the transition from melt-out tills, 
through undeformed and deformed lodgement tills, to sediment flow deposits and ice slope 
colluvium. They noted that there was considerable overlap of fabric strength between 
different sediment types. Additionally they suggested that deformed lodgement till had 
weaker fabric strength than the melt-out till or undeformed lodgement till. It have to be 
noted that concept of deformation till has evolved during the last few decades and the 
current understanding of deformation till (e.g. Evans et al., 2006) might be different from 
that of the past, see Dreimanis (1989) for classification of tills agreed in INQUA 
Commission on Genesis and Lithology of Glacial Quaternary Deposits. 
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Thomason and Iverson (2006) modelled the deformation of subglacial tills in 
large ring shear apparatus. With help of a simple model they investigated whether the 
microfabric could be used as strain magnitude marker to investigate glacial tills. They 
found that sand size particle attain stabile, 10° “up-glacier” dipping position after shear 
strain of 7 to 39. The steady fabric was moderately strong with eigenvalues of S1 = 0.71 to 
0.74. For statistical analysis they used for two dimensions adapted eigenvalues method 
suggested by Mark (1973) Thomason and Iverson (2006) found that large particles exhibit 
slightly stronger preferred orientation than the smaller ones. They found that microshears 
manifested as unistrial plasmic fabric gradually appeared with increasing strain rate. 
Additionally they found only limited evidence that strain was accommodated by rotation of 
till aggregates as suggested by van der Meer (1997) – only few rotation (circum-grain 
plasmic fabric or circular arrangement of smaller grains around large ones) features were 
observed in thin sections. 

1.5. Till macrofabric statistics and classification 

The statistics for till fabric studies almost exclusively is calculated according to 
eigenvalues method proposed by Mark at 1973, that gained ground among geologists 
especially after the paper of Ballantyne and Cornish (1979) where previously widely used 
chy-square test method was proven to be biased by arbitrary chosen starting point for 
measurement grouping. 

There have been several attempts to establish a till fabric classification system 
according to the shape of fabric diagrams and statistical parameter to alow indetification of 
certain till formation mechanisms (e.g. Lindsay, 1970; Hicock et al., 1996; Benn, Ringrose 
2001; May et al. 1980). However no classification system has been widely accepted.  

Benn and Ringrose (2001) tested the variance of till fabric samples from 
Breidamerkurjökull, Iceland, using ‘bootstrapping’ method. The bootstrapping method 
involves generation of large number of probable sample distributions from the initial set of 
measured data. They found that the sample size for till fabric analysis should be at least 50 
and seemingly different sample distributions could come from the same real population of 
fabric data. They demonstrated that bootstrapping method could be used to asset whether 
the different fabric measurement sets could be attributed to the same population. Larsen 
and Piotrowski (2003, 2005) tested this method and did not reached any satisfactory results 
as fabric data for all three till units studied overlapped significantly. Larsen and Piotrowski 
(ibid) concluded that only 30 measured clasts were sufficient in a case of the strong fabric. 
However this is the minimum fabric sample size and generally at least 50 and preferably 
100 measurements should be made. 

Lindsay (1970) divided till fabric diagrams in several modal groups by visual 
inspection. This approach later was developed by Hicock et al. (1996) who proposed visual 
division of fabric diagrams in 5 modal groups and proposed a methodology for interpreting 
till fabric data by taking into account the modal types of fabric distribution: unimodal 
clusters (un), spread unimodal (su), bimodal clusters (bi), spread bimodal (sb) and 
polimodal to griddle-like fabrics (mm). 

The methodology of Hicock et al (1996) for identification of modal distribution of 
fabric data by visual interpretation seems to be too subjective as demonstrated in 
discussion arising after other researchers attempted to use it  (Larsen, Piotrowski, 2003, 
2005; Krüger, Kjær, 2005). Larsen and Piotrowski (2003) assigned their till fabric data to 
unimodal as well as bimodal distributions but Krüger and Kjær (2005) latter argued that 
fabric should be interpreted unimodal. This demonstrated that subjective criteria such as 
visual interpretation should be avoided in interpreting till fabric data. 
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Similarly ĀboltiĦš already in 1986 proposed that the shape of fabric distribution 
visualized on the stereological net can be used to identify the till formation processes. As 
proposed elsewhere he adopted the wife that tills can be considered. He proposed that three 
basic types of till macrofabric diagrams can be distinguished, corresponding to distinct 
modes of plastic deformation of the till: plastic laminar flow along, resulting to single 
fabric mode parallel to the ice flow direction (S-glaciotectonite); fabric orientation 
transvers to the locala ice flow resulting from displacement along to sets of planes in the 
till unit (B-glaciotectonite) and griddle like distribution resulting from displacement along 
countless planes of the displacement (R-glaciotectonite). 

Larsen and Piotrowski (2003) extensively studied macrofabric of three till units 
exposed at an outcrop in Northern Poland. The three structurally distinct till units on the 
top of each other: (A) macroscopically deformed till at the bottom overlaying deformed 
outwash sand and interpreted as deformed glacial bed; (B) banded till unit at the middle 
interpreted as a result of combination of lodgement, deformation by ploughing of stones 
and melt-out; (C) homogenous till on top interpreted as melt-out till at the base of stagnant 
ice. They found surprisingly uniform strongly clustered (mean S1=0.876) macrofabric 
distribution in all three till units. They compared the results of the macrofabric 
measurements with interpretation suggested by May et al. (1980), Dowdeswell and Sharp 
(1986), Hart (1994), Hooyer and Iverson (2000), Benn and Ringrose (2001), and Hicock et 
al. (1996) diagram. They identified no significant macrofabric variation across all three till 
units or any dependency of macrofabric on considered grain size (0.7 to 5.6 cm). They 
found very strong fabric for the lover, deformation till unit (average S1=0.879). They 
claimed that their results suggested plastic rather than viscous behaviour of deforming till.  

Bennett et al. (1999) examined the usefulness of till clast fabrics to identify facies 
of unknown origin. They analysed a set of 111 clast fabric measurements samples (each 
containing at least 50 measurements) and a number of data obtained by other researchers. 
The found that all the fabric for all studied till facies (basal ice, melt-out till, lodgement till, 
deformation till and flow till) did overlap and the variation between results of different 
investigations of the same till facies often were more disperse than the results from one  
investigation of different till facies. Bennett et al. (1999) concluded that clast fabric alone 
was not sufficient for genetic fingerprinting the formation processes of tills and this 
parameter should be used with much more consciousness. 

Possibly the till fabric measurements are more useful for understanding the built-
up of glaciotectonic structures as extensively used by e.g. by ĀboltiĦš (1989), than in 
directly reconstructing the ice flow direction or unequivocal indicating mechanism of till 
genesis.  

With discussion alive what fabric shapes are characteristic for what till formation 
processes (Larsen , Piotrowski, 2003, 2005; Krüger, Kjær, 2005) the conclusion of Glen et 
al. (1957) that till fabric is good for ice flow direction reconstruction have been disputed as 
well. It was demonstrated (e.g. Dreimanis, 1999; Zelčs, Dreimanis, 1997) that that the till 
fabric reflects the local stress conditions. Often the local stress direction will coincides 
with the general ice flow direction; however there certainly are many cases when the local 
perturbations in shear strain will leave its imprint on the fabric distribution and orientation 
and it will not coincide with the general ice movement direction. Thus, in case when 
knowledge about any local perturbation in the glacial stress field are spars an assumption 
must be made that the till fabric is not directly linked to the ice flow direction. Finally it 
shall be noted that this conclusion will be true in case of microscale as well.  
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1.6. The till micromorphology and microfabric 

According to Glen et al. (1957) the first study of till micro fabric was published 
by Seifert in 1954: Das mikroskopische Korngefüge des Geschiebemergels als Abbild der 
Eisbewegung, zugleich Geschichte des Eisabbaus in Fehmarn, Ost-Wagrien und dem 
Dänischen Wohld. (The microscopic texture of glacial tills as a key to the reconstruction of 
the patterns of ice advance and retreat from Fehmarn, Ost-Wagrien and the Dänisch 
Wohld).-S. 124-190, 8 Abb., 6 Taf. (MEYNIANA, University of Kiel, 1954) In this paper 
it was noted that at the boundaries of a thick till layers a-lineation predominates and in the 
middle of till layer – b-lineation was observed.  

The earliest studies of the till microfabric is from 50-ties of 20th century when 
Robert F. Sitler and Carleton A. Chapman (1955) studied North-American tills using thin 
sections and observing the preferred orientation of sand grains and clay particles as well. 
This work was followed by Sitler (1963) and few others. Probably due to slow and 
complicated sample preparation techniques, until 90-ties of 20th century little work was 
done in the field of till micromorphology. The “modern era” of till microscale studies was 
largely pioneered by the works of van der Meer (van der Meer, 1993, 1996, 1997; van der 
Meer et al., 1992, 2003). Since many researches have studied till micromorphology (to 
name a few: Hiemstra, van der Meer, 1997; Hart et al. 2004; Menzies 2000a, b; Lachniet et 
al. 2001; Menzies, Zaniewski, 2003; Menzies et al., 2006; Piotrowski et al. 2006; 
Thomason, Iverson, 2006; Larsen et al., 2007).  

1.6.1. The till micromorphology 

There are developed a classification scheme of till micromorphology (see van der 
Meer, 1993; Figure 8 at Menzies, Zaniewski 2003). The classification is based on 
distinction between matrix and skeleton. In short, matrix is part of sediments that seems 
homogeneous in particular scale of exploration, e.g. in thin sections (microscopic scale) 
this usually will be fine silt, clay and amorphous material, such as disperse organic mater. 
Skeleton is material that appears particular in given scale of exploration, e.g. in thin 
sections (microscopic scale) it would be coarse silt particles, sand grains and other coarser 
material. In contrast, in macroscale matrix would be anything with grain size finer than 
gravel and skeleton – gravel, pebbles and cobbles. 

There is notion of plasma – it is material with no observable particulate structure 
in given scale of exploration. Plasma usually consists of clay-size particles. If 
mineralogical axes of all clay particles in plasma are oriented in the same direction, then in 
polarisation microscope a birefringence is observed. These are regarded as plasmic fabric. 

The structures formed jointly by matrix and skeleton grains are called as S-matrix 
structures. In case of tills they can be a result of plastic, brittle or polyphone deformation or 
formed by action of pore water. 

Not all micro-structures observed by different scientist are included in the scheme. 
Particularly, grain stacks or bridges, defined as 3 or more skeleton grains in a line pressed 
to each and developed oblique to shear direction as a mean of stress support, observed in 
tills is missing (Larsen et al., 2007). Although formation of grain stacks is similar to 
formation of crushed grains, the later often is an extreme way of grain stack collapse. 

The till micromorphology has been used as on of the tools in many studies of 
glacial sediments (e.g. Carr, 1999, 2001; Carr et al., 2006; Carr, Goddard, 2007; Carr, 
Rose 2003; Hart, 2006, 2007; Hiemstra, Rijsdijk 2003; Hiemstra et al., 2006; Johnson, 
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1983; Kalvans, Saks, 2008; Khatwa, Tulaczyk, 2001; Lachniet et al., 1999, 2001; Larsen et 
al., 2007; Menzies, 2000a; Menzies et al., 2006; Menzies, Taylor, 2002; Piotrowski et al., 
2006; Roberts, Hart, 2005; Sitler, Chapman, 1955; Zaniewski, van der Meer, 2005). Due to 
scope limitations these will not be reviewed there.

1.6.2. Micromorphology semi-statistics 

Probably Carr (1999) was one of the first who introduced the counting of 
microstructures to gain semi statistical insight of their abundance in studied tills. He used 
four classes to quantitatively describe concentration of a set of microstructures: (1) not 
present; (2) particulate feature; (3) much more developed, and (4) common structure. 
Latter this approach was adopted by other researchers (e.g. Larsen et al., 2007).  

However it seems that there is large degree of uncertainty in till micromorphology 
studies as demonstrated by Khatwa and Tulaczyk (2001). They compared 
micromorphology of two tills that have to be known from other sources having formed as 
deformation tills. One till was of Pleistocene age from the United Kingdom and other – 
modern till from beneath Ice Stream B, West Antarctica. They found remarkable 
differences in abundance of microstructures indicative of deformation process in both tills. 
Other researchers have concluded that the till form Antarctica has had strain ratio of 1000 
or more meanwhile the till from the United Kingdom only 10 or less, however the much 
more diverse microstructures are observed in the later one. They discuss that several 
factors are influencing this remarkable difference in till that both formed as the subglacial 
deformation tills: (1) the parent material – if the parent material available for till generation 
is heterogenous as in England, larger diversity of till microstructures is expected to be 
observed in comparison to case when parent material is homogenos as in Antarctica; (2) 
large strain magnitude will lead to homogenisation of sheared material, and little 
microstructures will be observable, in contrast moderate to small strain magnitude will 
preserve some initial inhomogenities of parent material, and observer will see spectacular 
microstructures; (3) finally, subglacial water flow, when present, will produce some sorting 
of the till material and hence grain size differences need for manifestation of till 
microstructures, thus in case when more subglacial water will be available, it will be 
possible to observer more diverse set of till microstructures.  

Similar observations were reported by Hart et al. (2004). They conclude that 
deformation is inhomogeneous in subglacial layer and more microstructures develop in 
coarse grained tills as there are more clasts to induce perturbations. Consequently 
microfabric is more heterogeneous in coarse grained tills. 

1.6.3. Till microfabric  

In many studies the till microfabric is restricted to the orientation of the elongated 
sand size particles (see list of papers in Appendix 1). In this paper the same restriction is 
made.  

It is sometimes referred to till microfabric as being roughly coincident with 
macrofabric (Dreimanis 1973, 1989). However, it has rarely been demonstrated with actual 
results. Only few attempts have been made to describe till microfabric – preferred 
orientation of elongated sand grains – using quantitative approaches (Chaolu, Zhijiu, 2001; 
Stroeven et al., 2001, 2005; Carr, Rose, 2003; Zaniewski, van der Meer, 2005; Roberts, 
Hart, 2005; Thomason, Iverson, 2006, 2009). Additionally, it is understood that large clasts 
will significantly affect the orientation of elongated sand size particles (Thomason, 
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Iverson, 2006), and the depositional process for different size till particles will be different 
(Benn, 1994).  

A conspectus of significant part of primary literature dealing with till microfabric 
studies are given it Appendix 1. In the next paragraphs a summary of literature review 
about till microfabric properties is drawn. 

Till type. The sediments studied in 19 examined papers are: modern tills – three 
cases; subglacial tills in 17 cases out of which 11 were recognised as deformation tills; in 
one case experimentally deformed till and in four cases – glaciomarine sediments.  

Thin section orientation. The study concentrate on the till microfabric as 
measured by apparent orientation of elongated sand size particles in till thin sections, 
therefore most of the studies reviewed uses this technique. There is rather large variety in 
the orientation of thin sections used in different studies: in four studies a set of three 
orthogonal thin sections are used; in six studies only vertical sections are studied 
(including two papers with few horizontal sections added) and in three papers only 
horizontal sections are addressed; three studies uses the approach of Evenson (1970) by 
cutting the vertical section in a direction of major microfabric mode of horizontal section; 
in one study thin sections is not used at all; in another study the thin section orientation is 
not specified and one study is using two vertical sections oriented in known, not-right 
angle to each other.  

Measurements. The measurement techniques are diverse as well: in eight studies 
apparent orientation was measured in thin section projections; in two cases microscope 
with rotation stage is used; in three studies semi automated procedure are applied – 
manually sleeted grains in digital images are automatically measured; one study uses fully 
automated measurement procedure using digital thin section images; in another study 
(represented with two papers) automated and manual directed sets of secant intersections 
with grain boundaries are counted; in two studies anisotropy of magnetic susceptibility 
(AMS) of monolith till sample is measured. Only one paper (Thomason, Iverson, 2009) 
compares the results obtained by different measurement techniques: AMS and apparent 
sand grain orientation in thin sections. The number of measured grains in single data set 
ranges from few tens to unspecified very large numbers representing all the grains in 
microphotograph measured automatically. 

Statistical indicators. Three of the studies uses only visual inspection of
microfabric rose diagrams; four other studies uses a varieties of χ2 tests in one case 
supplemented by the larges fraction of measurements falling in 30º sector; in three papers a 
2D variation of eigenvalue procedure proposed by Mark (1973) are used; resultant vector 
and vector magnitude are calculated in 4 papers; on study uses moving average technique; 
another – curve fitting regression and in one case the statistical procedure is not specified. 

Spatial distribution. Most authors note variation of microfabric in relatively 
short distances, attributing it to effects of local deformation field of nearby prominent 
boulder (Hart et al., 2004), different composition of till bands (Hart, 2006, 2007), changing 
local glacier advance direction and deformation mode as till is gradually accumulating 
(Thomason, Iverson, 2009) or with no evident explanation (Stroeven et al., 2001, 2005). 
Although in experimental work of Thomason and Iverson (2006) shearing glacial till in 
ring-shear apparatus a consistent, steady-state and strong microfabric developed across the 
shear zone at moderate strain rate of 7 to 39. Chaolu and Zhijiu (2001) found that the 
microfabric strength is heavily affected by the near by landforms such as rock core of a 
drumlin and roche moutonées: strong fabric in stoss and weak – in lees sides. 

Sorting effects. Generally it seems that better sorted (smaller grain size 
variations) sediments has stronger microfabric if the dominant grain-size is measured 
(Johnson, 1983; Hart et al., 2004; Hart, 2006, 2007). Hart (2007) notes that in banded tills 
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chalk-rich laminas have stronger microfabric than the sandy ones despite wider grain size 
distribution. This probably can be explained as a result of fine grained matrix of these tills 
an the estimation on sorting only form the length measured grain axis, that does not 
represent the real grain size distribution. Again the experimental work of Thomason and 
Iverson (2006) slightly contradict these findings, as the steady-state fabric vas attained 
faster for less-well sorted sediments, although the resultant strength was similar. 

Micro fabric of different grain sizes. The smaller grains tend to rotate around or 
to be plastered against surfaces (Hart et al., 2004) of large grains, hens generally the large 
measured grains give stronger fabric results (Hart et al., 2004; Carr, Rose, 2003; 
Thomason,  Iverson, 2006; Carr, Goddard, 2007). Additionally it seems that matrix 
supported (in the microscale) sediments have stronger sand grain apparent preferred 
orientation (Hart, 2006, 2007). Similar results is presented in macrofabric studies of 
different-sized clasts, e.g. Kjær, Krüger (1998) found that in late Pleistocene tills in 
Denmark and recent tills in South Iceland clasts shorter than 2 cm usually exhibit 
significantly weaker (∆S1~0.1) fabric than large clasts. Carr and Rose (2003) and Carr and 
Goddard (2007) observed that dominant orientation is related to size of measured grains 
with switching between parallel and transverse orientation in different size classes. 

Microfabric versus macrofabric and ice movement direction. The results of 
reviewed papers are inconclusive as regards the preferred microfabric orientation and 
established ice movement direction: Carr and Rose (2003) as well as Carr and Goddard 
(2007) found that only in half of cases microfabric orientation coincided with reconstructed 
ice movement direction; Ostry and Deane (1963) found striking similarity between 
microfabric orientation and reconstructed ice movement direction; experimental work of 
Thomason and Iverson (2006) demonstrated that in simple shear conditions microfabric 
steady state orientation was similar but slightly weaker than the macrofabric (Hooyer, 
Iverson, 2000); Johnson (1983) in extremely clay rich tills found that in most cases 
microfabric was strong with major mode either parallel or transverse to established ice 
movement direction; Svärd and Johnson (2003) found that in general microfabric was 
similarly oriented but weaker than the macrofabric; Thomason and Iverson (2009) 
demonstrated that microfabric was directly related to ice advance direction. It could be 
concluded that microfabric is weaker than the macrofabric and most often similarly 
oriented as the macrofabric. 

Conclusions. The results of most microfabric studies can be explained by the 
conclusions of Thomason and Iverson (2009): deformation via simple shearing do occur 
but is not the only process occurring in the glacier base and significant portions of 
deformation tills are subject to other modes of deposition or deformation. Likely 
candidates for deviation from simple shearing are pure shear occurring at the transition 
zones from patches of deformed bed and unreformed bed (e.g. Piotrowski, Kraus, 1997), 
rotating structures induced by clasts (e.g. Hart et al., 2004) or ploughing boulders 
(Tulaczyk et al., 2001).  

Few papers deserve special attention. After experimentally investigating the 
development of macrofabric in ring-shear apparatus (Hooyer, Iverson, 2000), Thomason 
and Iverson (2006) used the same equipment to study the evolution of microfabric in tills 
sheared to large strain rates. They found that sand-sized size particle attain stabile, 10° 
“upglacier” dipping position after shear strain of 7 to 39. The steady fabric was moderately 
strong with eigenvalues of S1 = 0.71 to 0.74 (calculated for 2D data and, probably, not 
directly comparable to eigenvalues calculated from 3D data). Initially random microfabric 
(S1 = 0.53 to 0.56; S1=0.5 indicating uniform distribution in all directions of elongated 
particles in 2D) gradually become oriented as shearing progressed. Only few examples of 
rotational structures were observed in thin sections. It could be concluded that most of the 
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strain was accommodated by two sets of secondary steeply dipping and shallow Riedel 
shears. This study is followed up by other experimental investigations of till microfabric 
using AMS technique, and most recently extended to field studies (Thomason, Iverson, 
2009). 

A few studies have concentrated on fabric strength and shape, especially, 
elongation ratio. Millar and Nelson (2003) examined an extensive set of macrofabric data 
of slope deposits. They found that the minimal elongation ratio (longest axis to 
intermediate axis) should be at least 1.5 : 1 and it should be restricted to narrow interval. 
The first recommendation was followed in this study as well and only grains with apparent 
elongation greater than 1.5 : 1 were used. 

Carr et al. (2000) concluded that in glaciomarine, mostly fine grained sediments, 
elongated sand grains poses subvertical preferred orientation, reflecting settling in a still 
water environment. 

1.6.4. Grain size and shape 

The descriptive, semi-quantitative micromorphological till characterisation and 
microfabric analysis are not the only information that can be extracted from till thin 
sections. The grain size and shape can be successfully studied as well, applying automated 
procedures if necessary. 

Development of image capturing and computing technologies in the last decades 
of previous century enabled creation of automated image analysis techniques for grain size 
measurement (e.g. Harrell, Eriksson, 1979; Mazzullo, Kennedy, 1985; Francus, 1998). 
Until now they are not widely utilised, however the techniques are constantly improved, 
facilitated by onset of digital photography era (e.g. Rawling, Goodwin, 2003; Rubin, 2004; 
Seelos, Sirocko, 2005; Mertens, Elsen, 2006; Barnard et al., 2007). 

The image processing procedures developed within scope of this dissertation is 
adoptable for grain size distribution and shape evaluation using digital images (Kalvāns et 
al., 2009). 
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2. Methods and materials 

In this study a methodology of thin section preparation from weakly consolidated 
materials was implemented in The Rock Research Laboratory of Faculty of Geography and 
Earth Sciences at the University of Latvia; image acquisition and analysis techniques were 
developed for microfabric automated measurement; microfabric data statistical treatment 
and visualisation procedures adapted and implemented. 

Samples from four study sates – Ziemupe, Strante, Plašumi gully and Sensala – 
are included in the dissertation. The site description is given in the 1. chapter “Subglacial 
environments and till micromorphology”. More than 77 thin sections of poorly 
consolidates sediments were prepared during the elaboration of the theses. All the thin 
section samples were collected and analysed by the author and majority of them were 
prepared by the author.  

2.1. Samples, data, analysis: the literature overview

Four distinct methodological steps of the till microfabric studies using thin 
sections are identified: (1) thin section preparation; (2) microfabric data acquisition; (3) 
statistical analysis of data, that can be subdivided in analysis of circular and spatial 
distributions of preferred orientation, and (4) visualisation or presentation of results. 

2.1.1. Thin section preparation 

The till thin section preparation process is a problem itself as diamicton sediments 
prior to thin-sectioning need to be impregnated with hardening agent (usually epoxy resin 
or polyesters sometimes plasticized with acetone) and often this is a difficult task. 
According to bibliographic list compiled by Prof. John Menzies1 there are published more 
than 50 papers on the subject, some of which are discussed there.  

For sample collection usually a Kubiena box – metal container, with both ends 
open (e.g. van der Meer, 1996) – is cut in the face of outcrop, removed with sample and 
wrapt in plastic for transportation to laboratory. In some cases, if long and possibly harsh 
transportation is expected, samples are immersed in quickly-curing glue – epoxy resin, 
polyester or acrylic resins (e.g. Baroni, Fasano, 2004; Chaolu, Zhijiu, 2001) – that is 
removed in laboratory. For collecting undistributed samples of lose sands more subtle 
techniques are developed that start with pre-hardening with agar in the field (Curry et al., 
2002). 

In the laboratory samples are either air-dried (Carr, Lee, 1998), freeze-dried or 
water replaced with acetone (e.g. Jim, 1985; Camuti, McGuire, 1999). In subsequent steps 
the samples are impregnated with epoxy resin either directly in vacuum chamber or 
replacing the acetone in the sample with resin some times involving several steps. After 
impregnation and curing of resin samples are cut and checked the impregnation quality. 
Surface re-impregnation if the quality is not satisfactory is suggested by Carr and Lee 
(1998). 

The further sample processing is much like dealing with hard rock and involves 
sample cutting in plates, grinding, polishing, mounting on glass slides, cutting off the 

                                                
1 Micromorphology Bibliography http://spartan.ac.brocku.ca/~jmenzies/biblio.html (2009.02.10.) 
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surplus sample, grinding, final polishing and covering with glass slips (e.g. Carr, Lee, 
1998).  

The optical microscopy of mineralogical materials often involves staining of the 
thin section for identification of certain minerals (e.g. Stinkulis, 1998) or etching to remove 
other minerals (fine-grained carbonate in particular, which is obscuring the plasmic fabric, 
(e.g. Thomason, Iverson 2006). For better void identification sometimes the sample is 
impregnated with epoxy that is coloured with fluorescent dye (e.g. Elsen, 2006; Kalvāns, 
Saks, 2008). 

As regards the impregnation agents, the extremely viscous epoxy resin marketed 
under brand name of SPURR seems to be the best choose (e.g. Jim, 1985; Curry et al., 
2002). Unfortunately the SPURR resin is one of most expensive available in the market. 
Cheaper alternative are available for example Struers A/S (EpoFix resin and EpoDye 
fluorescent dye for it). It must be noted that satisfactory results can be obtained by using a 
low-grade transparent industrial epoxy resins plasticized with acetone as well. 

2.1.2. Microfabric data acquisition 

Until recently till microfabric data was mostly acquired by visual identification of 
elongated grains and manual measurement of longest axis orientations in microscope 
(Ostry, Deane, 1963; Chaolu, Y., Zhijiu, C.  2001) or projected enlarged thin section 
images, e.g. using slide projector (Evenson, 1970) or projection macroscope (Carr, 1999). 
In later works computer assisted measurement has been performed that involve manual 
selection of grains to be measured (e.g. Hart et al. 2004) or automated measurement of all 
grains present in several microphotographs (Thomason, Iverson 2006) or whole slide 
(Kalvāns, Saks, 2008). Some authors suggest that better results could be obtained by using 
scanning electron microscopy images as the contrast between skeleton grains and matrix is 
higher (Francus, 2001). The overview techniques used by different authors for microfabric 
– preferred orientation of long axis of sand grains – measurement is given in the Appendix 
1. These methods are compared in Table 2.1.  

There are principally different methods of microfabric measurement, for example, 
anisotropy of magnetic susceptibility (AMS; Principato et al., 2005), but these are not 
widely used and will not be reviewed there. 

 Stroeven et al. (2001, 2005) have suggested a method of secants – counting the 
points of intersection between a set of parallel lines drawn in different directions and grain 
surfaces. The direction where the number of intersections is largest is perpendicular to 
preferred orientation of elongated grains. The difference between the preferred orientation 
direction and the less preferred directions obtained by this method however is small and 
therefore results are not convincing. The advantage of the approach is that it is not object 
based – it is not necessary to identify individual particles to obtain results so the approach 
should be more robust than object-based automated analysis procedures. 

The fabric analysis is really done with help of the image analysis tools. But there 
are at least two fundamentally different approaches: (1) object based approach (Francus, 
2001; Thomason, Iverson, 2006; Kalvāns, Saks, 2008) and (2) “statistical” approach 
(Stroeven et al., 2001, 2005; Tovey, Dadey, 2002). In the first case individual particles are 
identified using colour threshold techniques, that usually involve creation of binary image, 
and particle geometrical parameters – size, elongation, orientation – are automatically 
measured. In the later case colour gradients or orientation of grain boundaries (image 
binarisation is necessary) is analysed.  
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Table 2.1 Overview of methods used for microfabric – orientation of long axis of sand 
grains – measurement in tills using thin sections 

2.1. tabula. Morēnas mikrolinearitātes – smilts graudiĦu garākās ass orientācijas – 
mērījumu, izmantojot plānslīpējumus, metodikas pārskats 

Method References Advantages Disadvantages 
Manual 
measurement in 
thin section 
projection 

Carr, Rose, 2003; 
Carr, 1999, 2001; 
Johnson, 1983; 
Evenson, 1970; 
Carr, Goddard, 
2007  

– Low-tech – low-cost 
technique;  

– Researcher has full control 
on his data 

– Limited amount of data 
can be acquired (usually 
no more than 100 
measurements in a 
single set)  

Computer-assisted 
measurement with 
manual grain 
selection 

Hart et al., 2004; 
Hart, 2006, 2007; 
Sakai et al., 2002 

– Simple measurement 
procedures and data 
processing 

– Limited amount of data 
that can be acquired; 

–  Measurements can be 
subjective – the operator 
unintentionally may 
select grains aligned in 
on preferred direction 

Computerised 
automated 
measurement  

Thomason, 
Iverson, 2006; 
Kalvāns, Saks, 
2008 

– Easy to acquire and process 
very large (up to several 
thousands of measurements) 
data sets that are easily 
filtered according to 
selected parameters (e.g. 
elongation ratio or grain 
size); 

– Large, readily available data 
sets allows analysis of 
microfabrics spatial 
distribution 

– Non-robust object based 
approach;  

– Required high and 
uniform thin section 
quality 

“Secants” method Stroeven et al., 
2001, 2005 

– Not object-based image, 
hens more robust, analysis 
approach 

– Usually the proportion 
of elongates particles is 
relatively small and it 
leads to small difference 
between preferred/non-
preferred orientation 
directions 

– It seems that standard 
data statistical analysis 
procedures developed 
for circular data is not 
applicable 

– In both citied studies 
authors did not get 
satisfactory results with 
automated procedure 
and further 
improvements of 
methodology are 
needed. 

Francus (2001) proposed an automated methodology for bioturbation detection in 
laminated sediments by analysing the microfabric. Detailed steps of image analysis are 
provided in author’s web page2. The image processing steps are contrast enhancement, 
median filter, sharpen filter, mediana hybrid filter (enhances linear features), image 

                                                
2 http://www.geo.umass.edu/climate/francus/index.html  
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binarisation – creation of black and white image, filing holes and removing particles that 
are too small and, finally, automated measurements.  

Both Francus (2001), and Thomason and Iverson (2006) for automated 
microfabric measurement used public domain software NIH Image also named ImageJ, a 
Java program inspired by Image that “runs anywhere”. Kalvāns and Saks (2008) for the 
same purpose used ImageProPlus ® commercial software. 

2.1.3. Other image analysis procedures 

To highlight the possible applications and developments of image analysis 
procedures adapted and implemented with in this study a short overlook of other 
techniques is presented there. 

Zaniewsky and van der Meer (2005) presented an attempt to extract some more 
quantitative non-subjective information about till micromorphology from thin sections 
with help of the image analysis procedures used in remote sensing. They stress the need for 
objective tools to evaluated plasmic fabric as routinely researcher is subjectively 
describing observed scene and adding descriptive labels. Authors like Sitler and Chapman 
(1955) used λ=1/4 (gypsum) plate to enhance the colours of plasmic fabric. Zaniewsky and 
van der Meer (2005) acquired and processed 1280 to 1024 pixels large images (1.3 
megapixels) with resolution of 2000 pixels/cm stored in 24-bit RGB format as TIFF files. 
For identifying skelsepic plasmic fabric Zaniewsky and van der Meer (ibid) evaluated the 
concentration of plasmic fabric domains in the proximity of skeleton grains; if it exceeded 
certain threshold they labelled plasmic fabric as skelsepic. Other types of plasmic fabric 
were identified by the orientation of plasmic fabric domains. 

Mertens and Elsen (2006) proposed to use image analysis to determine the particle 
size distribution of sands used in ancient mortars. To maximise the contrast between 
aggregates and matrix they used average value of all three colour channels of RGB image 
and binarised resultant gray-scale image. Binary images were improved with filters 
despeckle for noise reduction, erosion and dilation to reduce noise and effects of touching 
grains and smoothing of grain boundaries. Binary images were cobined to increase the area 
covered by a single image file. 

Hiemstra et al. (2006) used semi-automated multispectral image analyses 
technique utilising TNTTM image analysis package, involving visual enhancement and 
filtering, supervised classification and accurate measurements of plasma fabric orientation 
in a study of glaciomarine deposits form Alaska. 

For analysis of air voids in lapped concrete samples there is developed hardware, 
controlled by personal computer – automated microscope RapidAir (Jakobsen et al., 2006). 
This uses image analysis to determine the ration, specific surface and distribution of air 
bubbles in concrete. Analysis procedure involves concrete sample lapping, colouring with 
black ink, filing air voids with white powder (BaSO4) and acquiring digital image of the 
sample. The analysis is done according to standards ASTM C 457 (US) and EN 480-11 
(EU). 

Seelos and Sirocko (2005) describe a methodology to deterring grain size 
distribution in combined thin section images obtained by polarisation microscope with 
crossed niclos. The image processing is done by AnalySIS software. The data are 
processed in MatLAB. They used automated thin section scanning using software-
controlled automatic microscope stage. 

Allen et al. (2007) presented an apparatus for automated pollen recognition and 
counting. In core of it is a neural network that taking into account a number of 
mathematical parameters are recognising pollen species in images, obtained automatically.  
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Tovey and Dadey (2002) analysed anisotropy of deep see sediments using colour 
gradient changes in scanning electron microscope images of thin sections. They tested 
several algorithms and found that the most robust are algorithm including identification of 
a colour gradient change for each pixel in centre of 5×5 pixels large square. This procedure 
does not require binarisation of the image and is not object based hens it should be more 
robust that other approaches are. 

To study 3-D structure of pore space of sandy sediments Curry et al. (2002) 
repeated cycles of micro-photographing of polished slab and controlled polishing of the 
sample to remove constant thickness of the material. Obtained 2D images were combined 
in 3D computer models of sediment texture. 

2.1.4. Analysis of circular  data

For statistical processing of microfabric data there is not established a single 
methodology. The methods used are modifications of (χ2) test (Chaolu, Zhijiu, 2001; Hart 
et al., 2004; Hart, 2006, 2007; Sakai et al., 2002), resultant vector, and its magnitude (Carr, 
1999; Car, Rose, 2003; Carr, Goddard, 2007; Kalvāns, Saks, 2008), moving average 
(Johnson, 1983; Stroeven et al., 2001, 2005), visual inspection of rose diagrams (e.g. 
Evenson, 1970), grain size and elongation ratio significance estimation in calculation 
specific statistical parameters (Francus, 2001), eigenvector analysis (Svärd, Johnson, 2003;  
Thomason, Iverson, 2006). 

Ballantyne and Cornish (1979) demonstrated that the chi-square test is very 
sensitive to initial conditions, such as the size of segment and initial point of segmentation 
given by researcher, and can give misleading results. The chi-square test in this aspect is 
not robust and for this reason it is not used in the current study. 

The simplest way of analysing directional data is to calculate the orientation and 
magnitude (or normalised magnitude) of resultant vector (R) by summing all the sinuses 
and cosines of all measurements and calculating the orientation of R by arctan function 
(e.g. Davis 2002, p.322-330). However the correct result is obtained only for von Mise’s 
distribution (normal distribution of circular data). The fabric strength can be calculated by 
normalising the R vector and comparing it to significance tables (e.g. give by Davis, 2002, 
p. 619). 

The statistical method most used for three-dimensional till macrofabric processing 
is the eigenvector method proposed by Mark (1973). Its reduction for two-dimensions in 
analysing till microfabric was introduced by Thomason and Iverson (2006). Mark (1973) 
himself points out that the eigenvalue method proposed by him is a valid 3D extension of 
2D orientation data analysis method proposed by Krumbein (1939) in late 30th of 20th

century The S1 value for 2D data is in range from 0.5 (isotropic distribution) to 1.0 
(unidirectional distribution). Unfortunately as other relatively simple methods for circular 
data statistical analysis (e.g. Davis, 2002) this method assumes monomodal distribution. 
The eigenvector method should be preferred as it is statistical tool used in most modern till 
macrofabric studies.  

Francus (2001) studied the microfabric of laminated sediments for specific 
purpose – to identify bioturbation. He developed several processing tools that considered 
the particles size and elongation ration to give it a weight coefficient for calculation of the 
orientation statistics. To test the robustness of his method Francus (ibid) compared the 
observed H values to particle contents in sediments, roundness of particles (calculated 
as: 24 LARi π= ) and spread of grain size distribution ( 00 sDMD ).  
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There is lack of simple and robust statistical analysis procedures for analysis of 
bimodal or multimodal data distributions. Jones and James (1969) described the 
methodology for analysing bi-modal orientation data. Their suggested algorithm calculates 
5 parameters for bimodal orientation data assuming that data set is produced form mixture 
of two normal circular distributions.  

2.1.5. Analysis of spatial distribution of circular data 

In a simplest case it is assumed that there is no (or limited and foreseeable) 
variations in spatial distribution of microfabric (and macrofabric) in the same sedimentary 
unit. However often in glacial sediments it is not the case. It is suggested that spatial 
distribution of microfabric can give clues about the till formation processes (Thomason, 
Iverson, 2006). But is has not been demonstrated by actual results of the field 
investigations yet using un-subjective approaches. 

However few authors have investigated the spatial distribution of tillmicrofabric. 
Hart et al. (2004) studied till microfabric in three levels: (1) the thin section level – 
orientation of up to 100 randomly selected grains were measured over the whole area of 
thin section; (2) homogenous area on the thin section; (3) microfabric in selected structures 
– around gravel grains, in pressure shadows and others. Similar approach is used in the 
studies of Roberts and Hart (2005), and Hart (2006, 2007). 

Thomason and Iverson (2006) analysed microfabric distribution across a shear 
band in till produces in ring-shear apparatus. They measured all the sand grains in 3 to 9 
microphotographs taken in certain distance from the shear band. Similarly Stroeven et al.
(2005) measured microfabric in vertical thin sections in closed areas and concluded that 
changes were due to local shear bands and structural boundaries. 

If microfabric data is collected from whole area of the thin section, with 
coordinates of each measurement as demonstrated in latter chapters, it is worth trying to 
analyse the spatial distribution with the same resolution. Therefore two studies with similar 
approach are shortly discussed.  

Yamamoto and Nishiwaki-Nakajima (1993) presented a study of computerized 
spatial dip-strike data analysis. For each measurement they calculated three normal 
components (l, m, n) used those in further steps. They computed them moving average for 
a grid points by summing up all the data points falling within certain distance r from the 
grid point. The distance r used was several times large than the grid resolution in this 
manner greater smoothing of data was achieved. For visualization they plotted the 
summary arrows for each grid point with arrow length representing the dip of the plane. 

Fisher et al. (1985) attempted to developed a technique for similarity analysis of 
orientation data and clustering it on the criteria of angular similarity as necessary, e.g., for 
analysis of spatial distribution. After data grouping in grid points, smoothed distributions 
were calculated, modal groups were identified manually and “bird feet” calculated. “Bird 
feet” is a kind of diagram showing the orientation and strengthen of each indentified modal 
group. A principal component analysis (PCA) was applied to identify the domains to be 
grouped together.  

Gumiaux et al. (2003) published a paper on the geostatistics best-fit interpolation 
of the orientation data demonstrating that it can be successfully applied to the directional 
data. They procedure involved the calculation of variograms, followed by a kriging 
interpolation of the data. The circular properties of the directional data are avoided by 
using the direction cosines of double-angle values in stead. The described methodology 
seems to be promising, but is not implemented in this study due to scope limitations. 
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2.1.6. Visualization 

Traditionally two dimensional orientation data in geology is visualised in form of 
rose diagrams (e.g. Carr, 1999). However the appearance of rose diagrams is not robust 
regarding the chosen starting point and width of segments (e.g. Fisher et al., 1985).  

Fisher et al. (1985) suggested instead of rose diagrams use density plots. The 
density is defined as follows:  

“Let θ1, …, θ n is n measurements (directions) in cyclic, regards as points on the 
circumference of unit circle. Let k be the integer part of αn1/2, where α is some 
positive number to be specified. The for any strikeθ, bk(θ) is inversely 
proportional to angular distance to the kth nearest strike.” 

The α values can be between 0.5 (little smoothening) to 2 (considerable 
smoothening). The algorithm is easy to be automated and gives nice smoothed results. 

Fisher (1989) described a more elaborated procedure for smoothing circular data 
set with normal distribution. He suggested using it in stead of vide-spread rose diagrams, 
as a significant random error is introduced when splitting the real data in arbitral classes. 
He gave an algorithm in full details to be used for kernel density estimate for circular data. 
Unfortunately fellow researchers have paid little attention towards his suggestion. Due to 
scope limitations this algorithm is not implemented in current study instead more simple 
density calculation algorithm of same researcher (Fisher et al., 1985) is used. 

The visualisation of spatial distribution of orientation data is common in 
atmosphere sciences and oceanography. It is usually done by arrows arranged in a 
rectangular grid that representing the dominant direction in its vicinity, with arrows length 
describing the magnitude (e.g. speed). Similar approach was adopted by Yamamoto and 
Nishiwaki-Nakajima (1993), although the arrow length represented the dip angle. 

In geology spatial distribution of orientation data usually are represented as a grid 
of diagrams (or its derivatives as “bird’s feet”, Fisher et al., 1985). 

2.2. The methodology of this study 

The research methodology was largely developed for the elaboration of the thesis 
by the author. The overview of methodology implementation and development as well as 
references to first presentations in scientific papers and scientific events are given in Table 
2.2. As of now in peer-reviewed literature results obtained by developed or implemented 
methodology are published in 2007 (Saks et al., 2007) and 2008 (Kalvāns, Saks, 2008). 
The most significant methodology advances are illustrated in the Fig. 2.1. 

In the next subchapeters the methodology of current study is presented starting 
from field work and continuing to the sample treatment, thin section preparation, thin 
section image acquisition, image processing and analysis, microfabric data processing and 
visualisation. 

2.2.1. Fieldwork and sampling 

The outcrops of the Quaternary sediments were mapped usually in a scale of 
1:100. Outcrops were photographed and images used as background for drawing full 
sketches after the fieldwork. Structural elements such as fold wings and hinges, shear 
plains and till macrofabric as indicated by elongated pebbles were measured in the field. 
Measuring the macrofabric only orientation of the longitudinal axis of pebbles with 



- 40 -

elongation ratio larger than 1.5 (e.g. after Carr, Goddard, 2007) were recorded. Bulk 
samples were collected for grain size analysis. 

Table 2.2. Chronology of the development and implementation of thin section preparation 
and analysis methodology 

2.2. tabula. Plānslīpējumu izgatavošanas un izpētes metodoloăijas attīstīšanas un 
ieviešanas hronoloăija 

Procedure 
External 
references 
(sources) 

First published or presented 
results 

Sample cementation using acetone-
epoxy resin mix, instead of colophony 
(rosin, Greek pitch) used before 

Camuti, 
McGuire, 
1999; Carr,  
Lee, 1998 

Kalvāns, Saks, 2004a, 62th

Scientific Conference of 
University of Latvia 

Thin section high-resolution scanning  –  Kalvāns, Saks, 2004a, 62th

Scientific Conference of 
University of Latvia 

Manual measurement of elongated 
sand-sized particles in digital images 

– Kalvāns, Saks, 2004b, INQUA 
Peribaltic working group field 
symposium, Latvia  

Use of dyed epoxy for sample 
impregnation, to improve void 
identification 

e.g. Elsen, 
2006 

Kalvāns et al., 2007a, b, 65th

Scientific Conference of 
University of Latvia;  INQUA 
XVII Congress, Cairnes, 
Australia 

Digital microphotography of thin 
sections and automated mounting of 
images (photomerge) to form all-slide-
size composite image 

– Kalvāns et al., 2007a, b, 65th

Scientific Conference of 
University of Latvia; INQUA 
XVII Congress, Cairnes, 
Australia 

Automated sand-sized particle 
measurement in digital images 

– Kalvāns et al., 2007a, b, 65th

Scientific Conference of 
University of Latvia; INQUA 
XVII Congress, Cairnes, 
Australia 

Visualisation of microfabric preferred 
orientation across the thin section area 
in different scales (resolution levels) as 
simple rose diagrams 

– Kalvāns et al., 2007a, b, 65th

Scientific Conference of 
University of Latvia; 65th

Scientific Conference of 
University of Latvia 

Visualization of microfabric spatial 
distribution with fabric strength 
significance indicator according to 
summary vector length 

Davis, 
2002 

Kalvāns, Saks 2009, 67th

Scientific Conference of 
University of Latvia  

Visualization of microfabric spatial 
distribution using data density plot and 
summary vector as preferred orientation 
and fabric strength indicator 

Fisher et 
al., 1985; 
Davis, 
2002 

Kalvāns, Saks, 2009, 67th

Scientific Conference of 
University of Latvia 
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Procedure 
External 
references 
(sources) 

First published or presented 
results 

Development of algorithm to identify 
preferred orientation modes in the data 
density diagrams using the given 
minimum modal strength and minimum 
distance between adjacent mode.  

– This dissertation 

Visualization of the microfabric spatial 
distribution with significance indicator 
according to eigenvalue method  

Mark, 
1973; 
Thomason, 
Iverson, 
2006 

Kalvāns, Saks, 2010, 68th

Scientific Conference of 
University of Latvia 

The introduction of automated log-file 
– fixation of calculation parameters 
such as the grain size considered and 
aspect ratio. 

– Kalvāns, Saks, 2010, 68th

Scientific Conference of 
University of Latvia 

Mosaic image creation with “buffer 
lines” between individual images thus 
eliminating the source of systematic 
bias in the blended margins between 
two images  

– Kalvāns, Saks, 2010, 68th

Scientific Conference of 
University of Latvia 

Well-sorted fine sand samples were collected for the OSL age determination using 
cooper tubes that were hammered in the face of the fresh cleaned outcrop. The samples 
were processed using single-aliquot regeneration (SAR) OSL method with quartz (Murray, 
Wintle, 2000) in the Dating Laboratory of the Finnish Museum of Natural History at the 
Helsinki University.  

Samples for thin section preparation were taken using a metal container. The 
container was cut into the deposits of the outcrop in a manner similar to that described by 
van der Meer (1996). In some cases the samples of well-consolidated diamicton were taken 
as single blocks. The upper face and northern direction were marked on each sample.  

2.2.2. Thin section preparation 

The thin section preparation methodology was largely adopted from Carr and Lee 
(1998), and Camuti and McGuire (1999). In the laboratory the samples were air-dried and 
pre-impregnated with epoxy resin dissolved in acetone (in proportion usually 1:7) and after 
hardening cut into sections. In the second stage of cementation, the samples were 
impregnated with epoxy resin diluted with acetone in proportion usually 3:1. The two-step 
impregnation procedure was necessary as in a single step it usually was not possible to 
attain significant depth of resin penetration in the sample, reaching necessary high sample 
strength in the same time. This problem is described by Carr and Lee (1998) and their 
recommendation of surface-impregnation of poorly impregnated samples is followed in 
several cases. Visual sample inspection did not give any indication that the initial 
microfabric is significantly disturbed by the two-step impregnation procedure. There are 
three types of effects introduce by the described cementing methodology: (1) cracks 
formed as a result of acetone evaporation and resin-shrinkage; (2) weak birefringence of 
hardened resin as a result of large strains formed due to shrinkage, and (3) visible 
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boundaries between resin of different cementation steps. All these effects are easily 
identifiable and do not affect the microfabric studies significantly. 

A B 

C D 

E F 

Figure 2.1 Illustration of microfabric measurement method and its development: 
A – Scanned thin section image (as used in Kalvāns, 2004); B – Cleaned composite thin 

section image acquired in cross-polarised light and with buffer-lines separating individual 
microphotographs, the unwanted features of the image are deleted or encircled with white 
band, allowing their elimination during creation of the binary image; C – Binary image, 
all black objects with aspect ration large than 4 or not matching the size criterions, e.g. 
lines that separated individual photographs in composite image (B) and any sand grains 
touching them, will not be measured. D – The first attempt of visualisation of the spatial 

microfabric distribution using simple rose diagrams; E – Visualisation using rose 
diagrams and indicating whether fabric strength is statistically significant with colour 
according to normalised resultant vector length and threshold values given by Davis 
(2002), published at Kalvāns, Saks (2008); F – Microfabric visualisation using data 

density plots (after Fisher et al., 1985), with indicated eigenvector (V1) orientation and 
strength (S1, after Thomason, Iverson, 2006; Mark, 1973, published at Saks et al.

(accepted for publication). 
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2.1. attēls. Mikrolinearitātes mērījumu metode un tās attīstības piemērs: 
A – Ieskenēta plānslīpējuma attēls (Kalvāns, 2004); B – Salikts un attīrīts plānslīpējuma 

attēls, iegūts polarizētā gaismā. individuālas mikrofotogrāfijas ir nodalītas ar 
robežlīnijām, nevēlamās attēla daĜas ir izdzēstas vai apvilktas ar baltu līniju, tādējādi 

izslēdzot tās no tālākas analīzes binarizējot attēlu; C – Binārais attēls, visi melnie objekti 
ar garākās/īsākās ass attiecību lielāku kā 4 vai neatbilstošu izmēru kritērijiem, piemēram, 
mikrofotogrāfijas atdalošās līnijas (B attēls) un smilšu graudi, kas tām pieskaras, tālākā

analīzes gaitā netiks uzmērīti; D – pirmais mirkolinearitātes telpiskā sadalījuma 
vizualizācijas mēăinājums izmantojot rozes diagrammas; E – mikerolienearitātes telpiskā
sadalījuma vizualizācija izmantojot rozes diagrammas un ar krāsa norādot vai linearitāte 
ir statistiski nozīmīga pēc normalizēta summārā vektora garuma atbilstoši Davis (2002) 

dotajām kritiskajām vērtībām, publicēts, Kalvāns, Saks (2008); F – mikrolinearitātes 
vizualizācija izmantojot orientācijas datu blīvumu (pēc Fisher et al., 1985), norādot 

eigenvektora (V1) orientāciju un vērtību (S1; pēc Thomason, Iverson, 2006; Mark, 1973), 
publicēts Saks et al. (accepted for publication). 

An EpoFix™ two-component epoxy resin obtained from the Struers AS produced 
for sample preparation purposes for microscopic investigations was used in most cases. 
Some large-volume samples were cemented with locally available low-cost transparent 
two-component epoxy resin. 

In a latter stage an EpoDye obtained from the Struers AS – fluorescent colouring 
agent for epoxy resin – was used to improve the identification of voids in the sample, 
especially important to increase the colour difference between voids and quarts grains in 
plain-light images. 

After cementation samples were cut and hand-ground in three stages or in single 
stage with Logitech CL40 grinding machine that was introduced in latter stage of thesis 
elaboration. At the last stage corundum grinding powder of around Grit P2500 was used. 
Ground samples were mounted on glass slides, and after cutting of bulk material, finished 
to reach the slide thickness around 30 µm, as indicated by the pale yellow interference 
colour of quartz grains. Three mutually perpendicular thin sections were prepared from 
each sample in all cases where it was possible. 

Thin sections were examined using ore microscope MBS-10 and polarized light 
mineralogical microscope MIN-8. In later stage of thesis elaboration Leica DMLA 
polarisation microscope and Leica polarisation stereomicroscope were introduced. 
Recommendations for thin section examination of van der Meer (1993, 1996, 1997), Hart 
and Rose (2001) were followed. The classification of microscale features of glacial 
sediments recommended by Menzies (2000a) and Menzies and Zaniewski (2003) were 
used. 

2.2.3. Digital image acquisition 

A set of overlapping thin section digital images was acquired with Leica DMLA 
microscope with magnification of 25 times and Leica DFC 480 digital camera with 
resolution of 1 mm = 460 pixels (2560×1920 pixels images). The fixed exposure was used 
for taking all images of single thin section. Exposure was adjusted so that to give best 
contrast between quartz grains and pores space filled with epoxy resin or sediment matrix. 
Images were saved using TIFF format. Plain as well as cross-polarised light was used.
Images were resampled to 50% resolution using IrfanView Batch conversion tool. 

The Photomerge function of Adobe Photoshop was used to create composite 
images. Later in the work (starting from June 2009) a new method of composite image 
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creation was adopted. The new method eliminated the need for extensive “image cleaning” 
by erasing the contact zones between images, where due to imperfect image alignment 
small but systematic distortions of thin section image was introduced. Microphotographs 
were taken in non-overlapping manner in rectangular grid, so that a “blank band” of known 
width separates them. Using the “Canava size” option of the IrfanView Batch conversation 
Advanced settings menu a white outline of corresponding width was added to each image. 
A composite image was created using the “Tile Images” command out of Process menu of 
ImageProPlus. In composted image thin lines were separating individual images resulting 
in insignificant lose of measured sand grain numbers and eliminating the need for 
extensive image cleaning. 

Red, green or blue channel, what ever gave the best results of RGB image, was 
extracted using ImageProPlus®. The blue channel was best for thin sections that were 
prepared using epoxy resin coloured with yellow dye and images acquired in plain light. 
The green or sometimes red belt was best for images acquired using cross-polarised light. 
The matrix, if any, in cross-polarised light du to birefringence often was reddish; the blue 
colour gave light halo around brightest spots in the images. If thin section thickens was 
larger than normal or uneven, due to appearance of higher birefringence colours, the red 
colour often gave better contrast between the mineral grains and matrix than the green.  

The cross-polarised light images were less sensitive to thin section thickness: 
strong and steady contrast between the mineral grains and pore space or matrix could be 
achieved for thin sections of uneven thickness as well. Significant proportion of mineral 
(quartz grains) was dark or grey-coloured and thus should not be measured in later stages. 
Additionally it was difficult to identify the thin-section quality problems in digital images. 
Finally, polymineral grains or lithoclasts could be misleadingly identified as separate 
grains and introduce additional error in the final microfabric data set. Both these obstacles 
could be avoided as the thin-section quality problems could be identified using the 
microscope and the lithoclasts could be easily identified and erased form the digital image 
manually. 

In case of un-coloured samples with dark matrix digital images were acquired 
using plain light and blue channel of TIFF image was used to extract the microfabric 
information. SegliĦš (1987a) has noted that the grains smaller than 2 mm in tills of western 
Latvia are predominantly of monomineral composition. So, possible bias that can be 
introduced in the data set by measurement of parts of polimineral grains instead of full 
grains are small. 

2.2.4. Microfabric measurement 

Several microfabric measurement techniques have been tested during the 
elaboration of this thesis. These including the one used for most of the data acquisition – 
automated object recognition – are described in this chapter.  

Initially microfabric was measured manually on the digital images of the thin 
sections. These results are presented in Saks et al. (2007), Kalvāns, Saks (2004b) and 
Kalvāns (2004). The apparent orientation of elongated grains was marked with lines on the 
digital thin section images obtained by scanning in the CorelDraw environment. The line 
data, marking long axis of selected grains were exported as plotter file and the end-point 
data for each line were extracted and processed in MS Excel. The obtained orientation data 
were processed as usual two-dimensional orientation data with StereoNet for Windows 3.1 
and represented as rose diagrams with 10º step. The length of longest, measure axis usually 
was between 0.05 mm and 1.0 mm. Usually two to four hundred grains were measured in 
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single thin section and 50 to 100, but in no case les than 30, in a detail of thin section 
except. 

The problems associated with this approach are demonstrated in Fig. 2.2, where 
the same area of thin section is measured twice by the same operator (author) separated 
with some two years. The strikingly different results are obtained mostly due to problems 
outlined by Ballantyne and Cornish (1979) – the slight change of initial point of rose 
diagrams can lead to large apparent differences, especially in cases when samples are 
small. To overcome these problems automated microfabric measurement methodology was 
developed and density-based data visualisation procedures adopted (see next subchapters). 

Figure 2.2. Two sets of manual microfabric measurement results visualized as traditional 
rose diagrams in the same fragment of thin section performed by the same author two 

years apart. The differences in appearance of both diagrams are mostly due to un-robust 
nature of rose diagrams in a case of small data sets: slight change in initial data can lead 

to relatively large differences in visualisation. 

2.2. attēls. Viena un tā paša autora ar divu gadu starplaiku veiktas manuālas 
mikrolinearitātes uzmērīšanas rezultāti atainoti, kā tradicionālā rozes diagrammas, nelielā

plānslīpējuma attēla fragmentā. Atšėirības starp abām diagrammām pamatā ir 
neizteiksmīgie maksimumi rozes diagrammās maza mērījumu skaita gadījumos, kā
rezultātā nelielas atšėirības starp abām datu kopām var radīt relatīvi lielas atšėirības 

diagrammu izskatā. 

Several software packages offer tools for automated image analysis including 
object recognition and measurement. The automated object recognition is simplest and best 
works for binarised – black and whit – images. The binary images with one colour 
representing sand grains and other all the rest of thin section image are acquired as 
described in the next subchapter. The objects – sand grains – are automatically measured 
using the commercial software ImageProPlus by the Measure dialog box. Such parameters 
as object size, elongation ration, the X and Y coordinates and orientation of longest axis 
are measured and exported to the spreadsheet document for processing and storage. 

2.2.5. Image processing and automated grain orientation measurement 

The description of work steps of image processing used in elaboration of this 
thesis is given in Table 2.3. The image processing methodology is adopted from Francus 
(1998). The robustness of microfabric data acquired using this approach with good results 
was tested by Francus (1998) himself. 
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2.2.6. Statistical procedures 

The task of the statistical analysis is to extract the information on microfabric 
spatial distribution across the area of the thin section and present in an easily-perceptible 
manner. Spatial orientation data, such as wind or ocean current direction, usually is 
represented in rectangular with arrow direction indicating the flow direction and arrow 
length – the flow speed. In geology the two dimensional orientation data is traditionally 
represented in a form of the rose diagrams, despite the weak point of rose diagrams is 
identified by Ballantyne and Cornish (1979), and demonstrated in Fig. 2.2). Obvious way 
forward is to combine the both approaches and represent the spatial distribution of 
microfabric as a grid of rose diagrams. During the dissertation elaboration the 
methodology has been modified as follows (see Table. 2.4 for method details):  

1) Initially rose diagrams have been constructed from data that are within 
distance R (distance between two adjacent grid points) from the central grid 
point (Kalvāns, Saks, 2008). The developed algorithm was slow as large 
number of square-root calculation was involved and it was somehow difficult 
to visually identify area from what microfabric data were collected. 

2) To reduce outlined problems a new algorithm was introduced, here called 
Large Squares algorithm. Instead of collecting the data form circle are around 
a grid point, data from the square outlined by the eight neighbouring grid 
points is collected. The algorithm is faster and area from what data in a single 
rose diagram is collected can be easily identified.  

3) Algorithm using hexagonal (not orthogonal) grid and algorithm collecting 
data from small square (a half-distance to neighbouring eight grid points) 
were tested, but were considered not suitable for the reason of conformity to 
established modes of visualisation and maximum possible resolution where 
still sufficiently large number of measurements were in the neighbourhood of 
any give grid point. 

During elaboration of dissertation, several approaches have been developed for 
the visualisation of preferred microfabric orientation in a single grid point: 

1) initially simple rose diagrams constructed according to recommendations of 
Davis (2002), including use of the square root instead of real number to 
indicate the magnitude of a single class. The statistical significance at a 90% 
level were calculated assuming the von Miss (normal) distribution with 
resultant vector method, using parameters published by Davis (2002) and 
identified by the colour of rose diagrams – green or dark grey for statistically 
significant preferred orientation (Fig. 2.3) and light grey for insignificant 
preferred orietnation. 

2) Latter a data density plot presented by Fisher et al. (1985) was implemented 
(Kalvāns, Saks, 2009). Instead of indicating the number of measurements in a 
given interval, the distance to n-nearest measurement is indicated in a rose-
like diagram. This approach is believed to overcome the weak point outlined 
by Ballantyne and Cornish (1979) of traditional rose diagrams. 

3) The mean fabric orientation initially was calculated as normalised summary 
vectors (Kalvāns, Saks, 2009). Latter more sophisticated algorithm of 
eigenvalues for 2D data as described and used by Thomason and Iverson 
(2006, 2009) is introduced (Kalvāns, Saks, 2008; Saks et al., accepted for 
publication). 



- 50 -

The data pre-processing tools used in elaboration the dissertation allow selection 
for the analysis only grains with certain parameters, such as given size range or the 
elongation ratio.  

Figure 2.3. An example of visualization of the apparent microfabric. A – Original thin 
section image; B – microfabric image. Dark grey diagrams have statistically significant 

lineation assuming von Mises (normal) distribution, the light grey ones – denote cases with 
unreliable values; the circle indicates area from witch data are plotted for single diagram, 

R is the distance between the centres of adjacent diagrams. 

2.3. attēls. Mikrolinearitātes vizualizācijas piemērs. A – oriăināls plānslīpējuma attēls; B – 
mikrolinearitātes sadalījums, tumši pelēkajās diagrammās ir statistitiski nozīmīga 

linearitāte, pieĦemot von Misa (normālu) sadalījumu, gaiši pelēkajās – statistiski nozīmīga 
linearitāte nav konstatēta; riĦėa līnija parāda laukumu, kurā esošie mērījumu punkti ir 
iekĜauti centrālās diagrammas statistikā, R ir attālums starp līdzās esošo diagrammu 

centriem. 

2.2.7. The methodology testing: experimental sedimentology  

To test the methodology of thin section preparation, data acquisition and analysis 
artificially created sample was processed according to the methodology described above: 
suspended diamicton collected at the Jaunupe outcrop to the NE of Ventspils was sediment 
in a water-filed cylinder. For ease of removal sediment sample a smaller cylinder was 
inserted in the cylinder where sedimentation took place. The suspension was added several 
times and so lamination was created. At the latest stage a few gravel grains were dropt in 
the soft sediments to see the deformation effects. It must be noted that the suspension was 
extremely dens and the sedimentation time – short – if comparing to conditions likely to be 
observed in glaciofluvial or glaciolimnic situation where similar sedimentary conditions 
could be observed. A 0.5 kg diamicton sample was suspended in 5 l of water and the total 
sedimentation time, except the final settlement of fine particles, was 1 ½ hours. A 60 mm 
thick sediment pile was accumulated. When fine particles that apparently were coagulated, 
settled, excessive water was removed and the sediments – left for draying.  

Sample was air-dried and impregnated with colour-les epoxy resin diluted with 
acetone in two steps, vertical thin section prepared and digital composite image created 
using the photomerge approach. The microfabric distribution was visualised using simple 
rose diagrams, with colour indicating whether the preferred orientation is statistically 
significant according to summary vector length method (Davis, 2002) using Radial data 
collection algorithm – that is all data within a distance R from the grid point are used to 
calculate its statistics.  
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Table 2.4. The statistical procedures for microfabric data analysis implemented and tested 
during thesis elaboration 

2.4. tabula. Pētījuma gaitā ieviestās un pārbaudītās mikrolinearitātes datu statistiskās 
apstrādes operācijas 

Procedure Method Description 
Circles All data points within the distance R, which is the distance 

between adjacent grid points arranged in an orthogonal 
grid, are included in the statistic of the give grid point. Each 
data point is included in the statistics of several – up to four 
– grid points. The data collection from circular area gives 
best representation of the microfabric in the vicinity of 
particular grid point and the overlapping of data collection 
areas ensures that no measurement is left out of the 
statistics. 

Hexagons Grid points are arranged in a hexagonal grid and each data 
point are added to statistics of a single, nearest grid point. 
The hexagonal grid ensures the least variation of distance 
from grid point to the borders of data collection area. 

Grouping 

Large 
squares 

Grid points are arranged in rectangular grid and data is 
collected from the square-shaped area outlined by eight 
neighbouring grid points. Each data point is included in 
statistics of four adjacent grid points. The inclusion of a 
single measurement in the statistics of several neighbouring 
grid points allow tracing of finer microfabric variations. 

Rose 
diagrams 

Data is visualized in the form of traditional bidirectional 
rose diagrams. The data is split into 10° classes. Square root 
instead of real number of measurements in every class is 
used to calculate the relative high of any data class in a 
diagram, thus avoiding the exaggerated size of the largest 
classes (Davis, 2002). The diagrams with statistically 
significant preferred orientation are plotted in another 
colour than the rest of diagrams. 

Density 
plots 

A method used by Fisher et al. (1985) for calculating the 
relative density for angular measurement data defined as: if 
θi, …, θn is the angular measurements, then the relative 
density for any measurement bk(θ) is inversely proportional 
to k nearest measurement, were k is the integer part of 
αn1/2, where α is freely chosen from 0.5 until 2. This 
approach is believed to overcome the weak point outlined 
by Ballantyne, Cornish (1979) of traditional rose diagrams. 

Visualisation 

The 
summary 
orientation 
– resultant 
vector 

The summary orientation of each grid point is plotted as the 
normalized Rn (resultant vector), that is additionally 
normalized against the threshold level of Rn length for 
different classes of number of measurements, as, according 
to Davis (2002), for large numbers of measurements shorter 
Rn values are considered statistically significant. The 
resultant vectors (Rn) that are statsitcialy significant after 
Davis (2002) are presented in green or dark grey colour. 

To be continued in the next page
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Procedure Method Description 
The 
summary 
orientation 
– 
eigenvector 

Alternatively the direction of the strongest clustering (V1) 
and respective eigenvalue (S1) are used (after Mark, 1973; 
Thomason and Iverson, 2006) applying gray-scale colour 
coding and line length scaling. 

Resultant 
vector 

Von Mises (normal, monomodal) data distribution is 
assumed and significance of preferred orientation is 
evaluated by calculating the length of the normalized 
resultant vector (Rn; Davis 2002, p.322-330) and 
comparing it to the critical values for 0.9 confidence level, 
as given by Davis (2002, p. 619): 

( ) ( )
n

Rn

22
2cos2sin ∑∑ +

=
αα

n – number of measurements around the grid point; 
2α – doubled orientation value of measurement 
The measured tilt angle α of a long axis before the 
statistical interpretation is doubled due to bidirectional 
nature of orientation data: a value 0° is actualy identical 
value 180°, but in trigonometrically they are opposite to 
each other; by doubling both measurements we get 0° and 
360° that are trigonometrically identical values (Davis 
2002, p.316-322). Usually the dominant orientation using 
this method is calculated only if the number of 
measurements in a given grid point is 18 or more.  

Preferred 
orientation 
strength 

Eigenvalue The eigenvalue method for three dimensional directional 
data analysis in glacial geology was suggested by Mark 
(1973) is implemented as adopted for 2D by Thomason, 
Iverson (2006):  

∑
=

=
n

i
in

S
1

2
1 cos

1
φ . 

The φi is the difference between the direction V1 – the 
direction of data clustering – and observation i. The 
function is maximised V1 (the value of V1 found that 
corresponds to largest value of S1). n – is the number of 
observations. In 2D if the S1=1, all measurements are 
pointing in the same direction and S1=0.5 indicates random 
distribution. Usually the dominant orientation using this 
method is calculated only if the number of measurements in 
a given grid point is 30 or more, unless it is stated 
otherwise. 

A distinct lamination with well expressed water escape structures that do not 
exceed the borders of single lamina is observed in the thin section (figure 2.4). The 
microfabric is predominantly horizontal, although in fine resolution the fabric alignment 
along water-escape structures can be seen. 

The “dropstones” that were introduced in the sedimentation last stage resulted in 
deformation of two laminas below them. Below the dropstones lamina thing and fabric 
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strengthening is observed. Material is pressed in a “pile” next to dropstones resulting in 
lamina thickening (layer parallel shortening) and sub-vertical reorientation and weakening 
of fabric. Fabric strengthening is observed in the opposite side to dropstones in the diapir-
like bulge formed by the thinking stones (figure 2.4).  

The eigenvector statistics for the sedimentation experiment thin section image that 
is acquired following the buffer-lines methodology is given in the Appendix 2 and 3. The 
fabric is rather strong and due to insufficient resolution the local variations introduced by 
fluidisation (flame) structures is not represented in the eigenvector data sets. The 
orientation of different-size grains is remarkably uniform (maximum spread only 8º, 
appendix 3). The fabric strength (eigenvalue) variations are moderate and larges grains 
exibit only slightly stronger fabric than the small ones. The water-escape (flame) structures 
are rather symmetrical, thus the summary preferred orientation is not affected, but can 
affect the fabric strength. 

A B 

C 

See caption in the next page
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Figure 2.4 Strongly sub-horizontal microfabric distribution (A and B) and microstructure 
(C) in artificially sediment suspended till diamicton. The suspension was added to the 

sedimentation container in several portions resulting in distinct lamination and formation 
of water-escape structures at the interface between individual lamina. In fine resolution 
(A) microfabric strength weakening around water-escape structures can be observed. In 
the medium grid resolution (B) the fabric weakening as a result of formation of diapir-

like structure is observed. The used symbols are explained in tables 1 and 2. 

2.4. attēls. Mākslīgi izgulsnēta, suspendētas morēnas diamiktona izteikti sub-horizontālā
mikrolinearitāte (A un B) un mirkostruktūra (C). Sedimentācijas traukā suspensija tika 
pievadīta atsevišėu porciju veidā, tādējādi veidojoties laminētai nogulumu uzbūvei un 

atūdeĦošanās struktūrām uz individuālu laminu kontaktvirsmām. Attēlā ar augstu 
izšėirtspēju (A) var novērot mikrolinearitātes pavājināšanos ap atūdeĦošanās struktūrām. 
Attēlā ar vidēju izšėirtspēju (B) var novērot mikrolinearitātes pavājināšamos diapīrveida 

struktūras kodolā. Izmantotie apzīmējumi ir paskaidroti 1. un 2. tabulās. 

It was conclude that symmetrical sub-millimetre size structures, such as flame 
structures (Fig. 2.4), likely will not be identifiable in microfabric distributions calculated 
with present methodology. However the centimetre scale deformation structures are likely 
to be clearly manifested in the microfabric distribution. 



- 55 -

3. The results  

The study is part of wider examination of geological structure of quaternary 
sediments exposed in the bluffs along the Baltic Sea by research group lead by professor 
Vitālijs Zelčs. In four key locations at the bluffs along the Baltic Sea coast till 
micromorphology was examined and are included in this thesis: Sensala site, Plašumu gully 
site, Strante site and Ziemupe site (Figure. 3.1 and 3.2). The study sites were selected due to 
examined sated of the outcrops that are constantly renewed due to costal erosion and easy to 
aces.  

To identify any position at the costal bluffs an arbitrary starting point is defined 
already by Dreimanis (1936). Any position at the costal profile is described by single number 
identifying the distance from this starting point in meters. It is referred to this profile in the 
current dissertation as well to indicate the location of certain geological structures. 

In the following subchapters findings of individual site investigation are described. 
The description in Sensala site and Ziemupe site more than one till unit was identified. They 
usually are marked as upper till and lower till. These names are used only to explain they 
relative position in the outcrop and contains no general indication about their age or genesis. 

Figure. 3.1. The overview cartogram of the location of study sites. 

3.1. attēls. Pētījuma objektu novietojuma pārskata kartogramma. 
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A 

    
B 

    
C 

    

To be continued in the next page
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D 

    
Figure. 3.2 The location of study objects shown in cartograms and ortofoto pictures: A – 

Ziemupe site; B – Plašumi gully site; C – Strante site; D – Sensala outcrop. © 2009 LU ĂZZF, 
kartes.geo.lu.lv; Ortofoto © 2009 Latvian Geospatial Information Agency 

3.2. attēls. Pētījuma objektu atrašanās norādītas pārskata kartogrammās un ortofoto attēlos: A 
– Ziemupe; B – Plašumi grava; C – Strante; D – Sensalas atsegums. © 2009 LU ĂZZF, 

kartes.geo.lu.lv; Ortofoto © 2009 Latvijas Ăeotelpiskās infromācijas aăentūra 
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3.1. Ziemupe site  

The outcrop at Ziemupe is located at the Baltic Sea cliff, approximately 30 km N 
of the Liepāja Town, in Western Latvia (Figs. 4.1 and 4.2); the geographical coordinates 
are X = 003-20-261E and Y = 062-93-812N in LKS92 reference system.  

At nearly 600 m long bluff section the complex sequence of Pleistocene marine 
and glacigenic sediments, common for this region, are exposed (KalniĦa et al., 2000; 
SegliĦš, 1987b; Saks et al., 2007; Kalvāns, Saks, 2008).  

Figure 3.3. Geological structure and location of the sampling sites for thin section 
preparation at the Ziemupe outcrop. The macrofabric measurement sites are indicated by 

white rectangles and  results are shown in the lower hemisphere of the Scmidt net:  n 
denotes number of measured clasts, maximum orientation concentration (max) is given 

in %. 

3.3. attēls. Ziemupes atseguma ăeoloăiskā uzbūve un paraugu ievākšanas vietas 
plānslīpējumu pagatavošanai. OĜu linearitātes rezultāti apkopoti Šmita projekcijā uz 
apakšējās puslodes: n norāda mērījumu skaitu, maksimaĜā  koncentrācija  (max) ir 

dota %.

At investigation site glaciotectonically deformed fine sand and silt sediments as 
well as glaciofluvial coarse sand and gravel topped by the basal till unit (referred here as 
the upper till unit) was exposed (Fig. 3.3). Additionally a second diamicton unit (referred 
here as the lower till unit) below the upper till was observed in some places along the 
outcrop. A distinct shear zone was observed at the base of upper till unit (Fig. 3.4). 

The deformation style of the sedimentary strata can be described as a result of two 
factors: (1) density inversion that resulted in formation of fine sand diapir structures and 
sinking of denser glaciofluvial sand and gravel, and (2) glaciotectonic compression and 
dragging of material at the glacier bed in the SSE direction. The formation of gravity-
driven structures likely was triggered by dramatic loss of sediment strength at some point 
when pore water pressure at a glacier sole reached the floatation point. The origin of the 
lower till unit at this site may be explained by detachment and sink in loose sediments of 
slab of basal till simultaneously with formation of other gravity-driven structures. 
Alternatively it could be an older till unit from earlier glacial phases. The top of structural 
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complex is cut by the shear zone at the base of the upper till, suggesting decoupling of the 
glacier from its bed. 

Figure 3.4. The shear zone at the base of upper 
till. The image is 0.5 m wide. Sample ZP1, ZP3 

and ZP5 collection sites are indicated. 

3.4. attēls. Bīdes josla augšējās morēnas 
pamatnē. Attēla paltums ir 0,5 m. Ir norādītas 

paraugu ZP1, ZP3 un ZP5 aptuvenās 
ievākšanas vietas. 

The upper till macrofabric has a well developed NNE to SSW orientation (Fig. 
3.3; with eigenvalues S1 = 0.675 and S2 = 0.256). This is some what different than 
suggested in studies on regional ice movement direction (Gaigalas et al., 1967; Punkari, 
1997; Boulton et al., 2001a; Zelčs, Markots, 2004).  

The interpreted shear direction in the shear zone beneath the upper till is roughly 
from S to N. 

The macrofabric of the lower diamicton is not as well developed (Fig. 3.3; with 
eigenvalues S1 = 0.443 and S2 = 0.370). Relatively high S2 value suggests more grid-like 
distribution that can be interpreted as result of the initial fabric re-orientation due to 
penetrative deformation. The mean macrofabric orientation is from NEE to SWW.  

The results of the microfabric investigation at the Ziemupe site are partly 
published at Kalvāns and Saks (2008). The dissertation is supplemented with results of the 
samples from the shear zone at the base of the upper till (ZP6 and ZP7) and missing 
sections of the sample ZP4 of the lower till. 

3.1.1. The samples 

Seven samples have been collected for micromorphological examination. Two of 
them were taken above, three – within and two – below the shear zone, separating upper 
and lower till units (Fig. 3.3.). Sample ZP1 is taken directly from the shear zone. Samples 
ZP2 and ZP5 are taken from the upper till respectively 1 m and 10 cm above the shear 
zone. Sample ZP3 is taken directly below the shear zone and sample ZP4 is taken 0.5 m 
below the shear zone from the lower till. Samples ZP6 and ZP7 are collected from the 
sandy shear zone at the contact of upper till and underlain sand and gravel. 

The thin sections were prepared using colourless (samples ZP3, ZP4 and ZP5) and 
dyed (samples ZP1, ZP2, ZP6 and ZP7) epoxy resin for sample hardening. Digital images 
were acquired using plain light; mosaic images were obtained using the photomerge 
function of Adobe Photoshop. 

In the samples ZP1 to ZP5 the microfabric distribution is visualised using simple 
rose diagrams, with colour indicating whether the preferred orientation is statistically 
significant according to summary vector length method with level of certainty 90% (Davis, 
2002) using Radial data collection algorithm – that is all data within a distance R (equal to 
the spacing of grid points) from the grid point are used to calculate its statistics.  
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The samples ZP6 and ZP7 as well as two sections of sample ZP4 have been 
analysed using visualisation of microfabric spatial distribution as data density (Fisher et 
al., 1985) and summary vector as preferred orientation and fabric strength indicator (Davis, 
2002) with a single colour indicating whether the preferred orientating is statistically 
significant, assuming von Miss (unimodal) distribution (Davis, 2002). A “large squares” 
method was used to collect all the data points that fall with the square outlined by the 
neighbouring grid points, with square sides 2×R long. Additionally on a latter stage the 
eigenvalue statistics were calculated for grid resolutions R = 20.8 mm, 2.6 mm and 1.3 mm 
according to method used by Thomason and Iverson (2006).  

3.1.2. Microfabric and macrofabric comparison 

The macrofabric data is three-dimensional (3D), meanwhile the microfabric data 
is two-dimensional (2D), but represented in three perpendicular sections. It is hard to 
reconstruct true 3D pattern of microfabric from thin sections, therefore, in Fig. 3.5 the 
macrofabric data in the same form as microfabric data in three mutually perpendicular 
plains, corresponding to orientation of thin sections.  

Figure. 3.5. Macrofabric lineation of upper (A) and lower (B) till units and its projections 
to single planes. See Fig. 3.3 for location of the sampling site. 

3.5. attēls. Augšējās (A) un apakšējās (B) morēnas makrolinearitātes hipotētiskās 
projekcijas uz trīs sasvstarpēji perpendikulārām plaknēm. Paraugu ievākšanas vietas 

izvietojumu atsegumā skat. 3.3. att. 

Calculating the projections of macrofabric to the plains it is assumed, that 
macrofabric is formed by perfect rod-like particles, with no flattening. Unfortunately 
flattening of the pebbles has not been recorded in the field. This introduces some level of 
uncertainty in projected data.  

3.1.3. The micromorphology  

Semi-statistical micromorphological analysis was done following methodology 
introduced by Carr (1999). A simplified set of four microstructure categories was adopted 
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from Larsen et al. (2007): (1) turbate structures, also known as galaxy or rotation 
structures, are circular grain alignments that occur both with and without a core stone; (2) 
lineations comprising three or more aligned elongated grains; (3) grain stacks are micro-
scale equivalents of grain bridges consisting of stacks of at least five equal-sized sand 
grains; (4) intra-clasts and domains are inclusions or zones of sediment with unique 
textural characteristics that can be distinguished from the surrounding sediment. Due to 
low clay contents of the studied tills no plasmic fabric structures (i.e. clay-sized particle 
arrangement observable in cross-polarised light) were observed.  

The microstructures have been counted in the thin section area of 23×16 mm. 
Results of microstructure counts are presented in Fig. 3.6. For each sample number of 
counted microstructures in each thin section are standardized to proportion of glacial 
diamicton to other material (like sand lamina, gravel grains of significant size or technical 
defects) in analysed area of thin section and summed together. 

Figure 3.6. Synoptic results of the microstructure 
counting. Note that the samples collected from the 
shear zone at the base of upper till (ZP1, ZP6 and 
ZP7) have a distinctly different set of microstructures 
than samples collected elsewhere. See Fig. 3.3 for 
location of the sampling site. 

3.6. attēls. Mikrostruktūru skaitīšanas rezultātu 
kopsavilkums. Paraugos, kas ievākti no bīdes joslas 
augšējās morēnas pamatnē (ZP1, ZP6 un ZP7), ir 
novērojams atšėirīgs mikrostruktūru komplekts, 
salīdzinot ar tiem, kas ir ievākti citur. Paraugu 
ievākšanas vietas izvietojumu atsegumā skat. 3.3. att. 

It can be seen (Fig. 3.6.) that the samples collected from the sandy shear zone 
(No. ZP6 and ZP7), as expected, have similar microstructure sets excepting the number of 
intracalsts with high number of grain stacks and lineations. In contrast the sample ZP1 that 
is believed to be collected from the shear zone between upper and lower tills has very 
small numbers of lineations and grain stacks.  

It is visually assessed that the much greater amount of displacement has occurred 
in the sandy shear zone than between the both till units. Thus different microstructure sets 
is understandable.  



- 62 -

3.1.4. Upper Till: Sample ZP2 

Both in macroscale and microscale the upper till has uniform composition with 
dominantly sand and silt matrix and occasional gravel grains. The sample ZP2 taken well 
above (1 m) the basal shear zone has microfabric orientation close to that of macrofabric 
orientation in both vertical and horizontal sections (Figs. 3.5 and 3.7). However in 
horizontal plane (Fig. 3.7.a) multiple domains of different orientation can be observed and 
in large generalisation levels (greater than R = 1.4 mm) the statistically significant 
lineation has not been detected. Overall shape of the diagrams indicate N-S trend.  

In vertical section parallel to macrofabric (Fig. 3.7.b) microfabric is well 
developed, and in all resolutions statistically significant lineation domains are observed, 
coinciding with macrofabric. Several curved microfabric structures associated with gravel 
grains are present, and discontinuous microfabric can be observed. In the section that is 
transverse respective to macrofabric (Fig. 3.7.c) several domains with statistically 
significant lineation are observed. However, in large generalisation the microfabric is not 
as strong as in section parallel to macrofabric. As demonstrated in Fig. 3.5a macrofabric in 
the upper till is distributed in subhorizontal plane, and this corresponds to microfabric 
distribution in the horizontal plane (Fig. 3.7.a) as well. Even the strength of macrofabric 
and microfabric is similar in both projections – larger in N-S projection (Fig. 3.5a, N-S 
projection and Fig. 3.7.b) and weaker in E-W projection (Fig. 3.5a, E-W projection and 
Fig. 3.7.c). 

3.1.5. Upper till: Sample ZP5  

The sample is taken few cm above the extrapolated basal shear zone (Figs. 3.3 and 
3.4). In general microfabric in this sample is in agreement with the macrofabric orientation 
of the upper till, especially in the horizontal plane. However, the vertical sections show 
preferred sand grain orientation dipping 30° to 45° from the horizontal plane. Similar, 
steeply dipping microfabric in basal tills with several orientation domains have been 
reported by other researches as well (Carr, 2001; Carr, Rose, 2003) deemed as an indicator 
of the large strain. The summary of the apparent microfabric in vertical sections has only 
weak subhorizontal maximum. 

There is a zone of well developed microfabric in the horizontal section, which 
coincides with orientation of the macrofabric of the upper till, however it is situated near 
large gravel grain, and trend of microfabric is coinciding with observed trend of gravel 
grain surface. Elsewhere in horizontal section the domain pattern of microfabric is 
observed. 

3.1.6. Shear zone between the tills: Sample ZP1 

The sample is taken so that to include a termination of the sand stringer that can 
be followed out to the basal shear zone of the upper till (Figs. 3.4 and 3.6). The horizontal 
thin section and one vertical thin section are cutting this stringer. In contrast to other 
samples this sample stacks as illustrated in Fig. 3.6 has plenty of silt intraclasts, smaller 
number of lineations, and grain. A sand lamina or stringer and silt nodules are signs of 
assimilation of subglacial material in deforming till due to shearing along the basal shear 
zone of the upper till. No “armour” of sand grains is observed on the surface of glacial 
diamicton and sand lamina. This indicates that contact is not of sedimentological character 
and has been formed or renewed during deformation. 
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The margin between the sand stringer and diamicton is sharp and undulating 
perturbed by secondary shear structures such as echeloned joints and Riedel shears (Fig. 
3.8.c). Similar to the structure described by Larsen et al. (2007) it has undulating 
boundaries and little mixing between contrasting lithologies can be observed. Only slight 
statistically insignificant lineation of NWW – SEE direction in large generalisation levels 
can be observed in the horizontal section of sand lamina (Fig. 3.8.a), however, strong 
subhorizontal sand grain lineation is observed in the vertical section (Fig. 3.8.c).  

The microfabric of the diamicton in the horizontal plane has no significant 
orientation, however, in large resolution some circular structures can be traced (Fig. 3.8a). 
The domain-like microfabric pattern in large resolution is presented in the vertical section 
as well, but no preferred orientation can be traced in low resolution – large generalisation 
levels. The till microfabric observed in the sample ZP1 is not similar to neither of both till 
unit macrofabrics.  

3.1.7. The sandy shear zone: Sample ZP6 and Sample ZP7 

The shear zone in a base of the upper till (Fig. 3.9), composed of sandy and 
diamicton bands, has strong and uniform subhorizontal preferred sand grain orientation in 
vertical sections (Fig. 3.10) that is slightly dipping towards the shear direction.  

Figure 3.9. The sandy shear zone and samples Nos. ZP6 and ZP7 at a base of the upper till 
at the Ziemupe site. The height of sampling box is 7 cm. See Fig. 3.3 for location of the 

sampling site. 

3.9. attēls. Smilšainā bīdes josla un paraugu nr. ZP6 un ZP7 ievākšanas vietas augšējās 
morēnas pamatnē. Paraugu ievākšanas kastītes augstums ir 7 cm. Paraugu ievākšanas 

vietas izvietojumu atsegumā skat. 3.3. att. 

In vertical sections sand bands and diamicton bands have different patterns of 
microfabric distribution. The sandy bands have the strong subhorizontal microfabric, while 
the bands of the heterogeneous material like the diamicton have markedly weaker 
microfabric, with noticeable domain-like distribution. In all parts of the shear zone the 
microfabric is stronger than in the overlaying till. 



- 
68

 -

A
 

B
 

C
 

S
e

e
 c

a
p

tio
n

 in
 t

h
e

 n
e

xt
 p

a
g

e



- 
69

 -

F
ig

u
re

 3
.1

0.
 O

rt
ho

go
n

al
 th

in
 s

ec
tio

ns
 fr

om
 th

e 
sa

m
p

le
 Z

P
7,

 th
e 

lo
w

e
r 

pa
rt

 o
f s

he
ar

 z
on

e 
at

 th
e 

b
as

e 
of

 th
e 

up
pe

r 
til

l a
t 

Z
ie

m
u

pe
 

si
te

, i
n 

co
lu

m
ns

: A
 –

 h
or

iz
on

ta
l s

ec
tio

n 
N

o.
 Z

P
7-

H
-

3-
2;

 B
 –

 v
er

tic
al

 s
e

ct
io

n 
N

o.
 Z

P
7-

1
-2

, f
a

ci
ng

 N
N

W
; 

C
 –

 v
er

tic
al

 s
ec

tio
n 

N
o.

 
Z

P
7-

2-
1,

 f
ac

in
g 

N
E

E
; n

ot
e 

th
at

 th
e 

ve
rt

ic
al

 s
e

ct
io

n
s 

Z
P

7-
1-

2 
an

d 
Z

P
7-

2-
1 

ar
e 

or
th

o
go

n
al

 b
ut

 c
om

e 
fr

om
 d

iff
er

en
t h

ei
gh

ts
 o

f 
th

e 
sa

m
pl

e.
 T

he
 m

ic
ro

fa
br

ic
 in

 h
or

iz
on

ta
l s

ec
tio

n 
N

o.
 Z

P
7-

H
-3

-2
 h

av
e 

a 
do

m
ai

n-
lik

e 
di

st
rib

ut
io

n 
an

d 
in

 lo
w

er
 g

rid
 r

es
ol

ut
io

ns
 (

e.
g.

 
R

 =
 2

.6
 m

m
) 

on
ly

 s
m

al
l n

um
be

r 
of

 d
ia

gr
am

s 
sh

ow
 s

ta
t

is
tic

al
ly

 s
ig

ni
fic

an
t 

pr
ef

e
rr

ed
 o

rie
nt

at
io

n.
 T

h
e 

to
p 

of
 th

e 
Z

P
7-

H
-3

-2
 

se
ct

io
n 

is
 to

 th
e 

33
0º

 a
nd

 th
e 

su
m

m
ar

y 
o

rie
nt

at
io

n
 i

s 
w

ea
kl

y 
ex

pr
es

se
d 

in
 N

-S
 d

ire
ct

io
n.

 S
tr

on
g,

 c
o

ns
is

te
nt

 a
nd

 in
 fi

ne
 

re
so

lu
tio

n,
 u

nd
ul

at
in

g 
m

ic
ro

fa
b

ric
 in

 v
er

tic
al

 s
ec

t
io

n 
of

 s
an

d 
ba

nd
s 

a
re

 e
vi

d
en

t. 
T

he
 m

ic
ro

fa
br

ic
 in

 v
er

tic
al

 s
e

ct
io

n 
of

 d
ia

m
ic

to
n 

ba
nd

 (
N

o.
Z

P
7-

2-
1

) 
is

 r
at

he
r 

st
ro

n
g,

 b
ut

 n
ot

 a
s 

co
n

s
is

te
nt

 a
s 

in
 th

e 
sa

nd
 b

an
ds

. U
se

d 
sy

m
bo

ls
 a

re
 e

xp
la

in
ed

 in
 ta

bl
es

 1
 a

nd
 2

. 
S

ee
 

F
ig

. 3
.3

 f
or

 lo
ca

tio
n 

of
 th

e 
sa

m
pl

in
g 

si
te

. 

3.
10

. a
ttē

ls
. O

rt
og

on
āl

i p
lā

ns
līp
ēj

um
i i

zg
at

av
ot

i n
o 

pa
ra

u
ga

 Z
P

7,
 k

as
 ir

 ie
v

āk
ts

 n
o 

sm
ilš

ai
nās

 b
īd

es
 jo

sl
as

 a
ug

šēj
ās

 m
or
ēn

as
 

pa
m

at
nē

, 
Z

ie
m

up
es

 a
ts

e
gu

mā,
 k

ol
on
ās

: A
 –

 h
or

iz
on

tāl
s 

gr
ie

zu
m

s 
N

r.
 Z

P
7-

H
-3

-2
; B

 –
 v

er
tikāl

s 
gr

ie
zu

m
s 

N
r.

 Z
P

7-
1-

2,
 vēr

st
s 

uz
 

Z
Z

R
; C

 –
 v

er
tik
āl

s 
gr

ie
zu

m
s 

N
r.

 Z
P

7-
2

-1
, vē

rs
ts

 u
z 

Z
A

A
; p

lān
sl
īp
ēj

um
i Z

P
7-

1-
2 

un
 Z

P
7-

2
-1

 ir
 o

rt
og

onāl
i, 

be
t 

at
bi

ls
t d

ažā
di

em
 

lī
m

eĦ
ie

m
 b
īd

es
 jo

slā
. H

or
iz

on
tāl

aj
ā 

pl
ān

sl
īp
ēj

um
ā 

Z
P

7-
H

-3
-2

 ir
 n

ov
ēr

oj
am

s 
do

mē
nu

 ti
pa

 m
ik

ro
lin

ea
ritā

te
s 

sa
da

līju
m

s 
un

 
ga

dī
ju

m
ā 

ar
 z

em
u 

re
žăa

 iz
šė

irt
sp
ēj

u 
(R

 =
 2

,6
 m

m
) 

tik
ai

 n
ed

au
dz

as
 d

ia
gr

am
m

as
 u

zr
ād

a 
st

at
is

tis
ki

 n
ozī

m
īg

u 
lin

ea
rit
āt

i. 
P

lā
ns

līp
ēj

um
u 

Z
P

7-
H

-3
-2

 a
ug

ša
 ir

 vēr
st

a 
uz

 3
30

°,
 u

n 
vāj
i i

zt
ei

kt
a 

su
m

mā
rā

 o
rie

nt
āc

ija
 ir

 v
ēr

st
a 

Z
-D

 v
irz

ie
nā

. V
er

tik
āl

aj
os

 
gr

ie
zu

m
s 

ir 
no

vēr
oj

am
a 

st
ip

ra
 u

n 
vi

en
mēr
īg

a 
m

ik
ro

lin
ea

ritā
te

; p
ie

 a
u

gs
ta

s 
re

ž
ă
a 

iz
šė

irt
sp
ēj

as
 ir

 n
ov
ēr

oj
am

s 
(R

 =
 0

,6
 m

m
) 

vi
ĜĦ

ot
s 

m
ik

ro
lin

ea
ritā

te
s 

sa
da

līju
m

s.
 M

ik
ro

lin
ea

ritā
te

 v
er

tik
āl
ā 

gr
ie

zu
mā

, d
ia

m
ik

to
na

 jo
sl

iĦa
 (

pl
ān

sl
īp
ēj

um
s 

Z
P

7-
2-

1
) 

ir 
re

la
tīv
i 

st
ip

ra
, b

et
 n

e 
tik

 v
ie

nm
ēr
īg

i o
rie

nt
ēt

a,
 k
ā 

sm
ilt

s 
jo

sl
iĦā

s.
 Iz

m
an

to
tie

 a
pzī

m
ēj

um
i i

r 
pa

sk
ai

dr
ot

i 1
. u

n 
2.

 ta
bu

l
ās

. P
ar

au
gu

 
ie

vā
kš

an
as

 v
ie

ta
s 

iz
vi

et
oj

um
u 

at
se

gu
m
ā 

sk
at

. 3
.3

. 
at

t. 



- 70 -

A 

B 

Figure 3.11. The microfabric distribution (A) in vertical thin section ZP7-2-2 (B), facing 
NEE, from the shear zone at the base of the upper till at the Ziemupe site. Observe the well 

developed preferred orientation in well sorted sands of the shear zone and wavy 
microfabric pattern. Used symbols are explained in Tables 1 and 2. See Fig. 3.3 for 

location of the sampling site. 

3.11. attēls. Mikrolinearitātes sadalījums (A) uz ZZA vērstā vertikālā plānslīpējumā ZP7-
2-2 (B), ka izgatavots Ziemupes atsegumā no bīdes joslas augšējā morēnas pamatnē. 

Pievērsiet uzmanību labi izteiktajam mikrolinearitātei ar viĜĦoto sadalījumu. Izmantotie 
apzīmējumi ir paskaidroti 1. un 2. tabulās. Paraugu ievākšanas vietas izvietojumu atsegumā

skat. 3.3. att. 

In fine resolution a wavy pattern of microfabric distribution can be identified in 
vertical sections of the sand bands (Fig. 3.10). In sample ZP7-2-2 the microfabric waves 
can be correlated with diamicton boudins (Fig. 3.11). The wavy pattern can be resulted 
from secondary shears, cutting the general shear band in low angels in both upwards and 
downwards directions. Alternatively it can be the effect of stiff inclusions in the shear zone 
such as till boudins or gravel grains initiating something like standing waves or ripples in 
the shear zone.  
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Figure 3.12. Orientation of different-size grains from the horizontal thin sections of the 
shear zone at the base of the upper till at the Ziemupe site. Thin section ZP6H-2 is from the 

diamicton band, thin sections ZP7H-1 and ZP7H-3 are from sandy bands with some 
inclusions of the diamicton, and thin sections ZP7H-3-2 and ZP7H-5 from the fine sand 
bands of the predominantly sandy shear zone. A stronger fabric is observed in the sand 

samples although statistically significant lineation is observed only for the coarsest grains 
in the thin section ZP7H-5. The dominant orientation is similar to that of the macrofabric 
of the upper till, that is trending in NNE-SSW direction. The top of diagrams is to the N; 

symbols used as in Table 2. See Fig. 3.3 for location of the sampling site. 

3.12. attēls. Dažādu izmēru smilts graudu orientācija horizontālos plāslīpējumos, kas 
izgatavoti no Ziemupes atseguma augšējās morēnas pamatnē esošās bīdes joslas 

paraugiem. Plānslīpējums ZP6-H2 ir izgatavots no diamiktona josliĦas, plānslīpējumi ZP7-
H1 un ZP7-H3 ir izgatavoti no smilts josliĦām ar atsevišėiem diamiktona ieslēgumiem, un 
paraugi ZP7H-3-2 un ZP7H-5 no smalkas smilts josliĦām bīdes joslā. Izteiktāka linearitāte 
ir novērojama smilts paraugos, lai gan statistiski nozīmīga tā ir tikai rupjākajiem graudiem 

plānslīpējumā ZP7H-5. Dominējošais lineariatātes virziens ir tuvs augšējās morēnas 
makrolineariatātei: ZZA – DDR. Diagrammu augša ir uz Z, apzīmējumi atbilstoši 2. 

tabulai. Paraugu ievākšanas vietas izvietojumu atsegumā skat. 3.3. att. 
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Figure 3.13. Orientation of different-size grains from the vertical thin sections of the shear 
zone at the base of the upper till at the Ziemupe site. Note the consistent orientation in sand 
bands and more heterogeneous orientation in the diamicton bands. The top of diagrams is 

to the N; symbols used as in Table 2. See Fig. 3.3 for location of the sampling site. 

3.13. attēls. Dažādu izmēru smilts graudu orientācija vertikālos plāslīpējumos, kas 
izgatavoti no Ziemupes atseguma augšējās morēnas pamatnē esošās bīdes joslas 

paraugiem. Ievērojiet, ka smilts materiāli plānslīpējumos dažādu izmēru graudu orientācija 
ir l īdzīga, savukārt diamiktonā tā ir mainīgāka. Diagrammu augša ir uz Z, apzīmējumi 

atbilstoši 2. tabulai. Paraugu ievākšanas vietas izvietojumu atsegumā skat. 3.3. att. 

In horizontal sections larger grains has relatively stronger preferred orientation 
that the smaller ones. In vertical sections the variation of preferred orientation across 
different size classes, both for sand and diamicton bands, are smaller than in horizontal 
sections; the variation is large in diamicton bands than in sand bands  (Figs. 3.12 and 3.13). 
In case of the horizontal sections almost transverse summary orientation in some cases is 
observed, but it is poorly developed and can not be regarded as a rule. 

The wavy microfabric pattern is similar to echelon-type secondary shears 
observed by Mandl et al. (1977) in ring-shear experiments after the shear zone has 
collapsed into single plane producing slickenslided surface. Probably inclined microfabric 
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zones developed when shear displacement ceased in the particular part of the shear zone, 
and inclined zones of microfabric are artefact of ceasing shear displacement.

The microfabric in horizontal section is rather similar to the microfabric of till 
samples. It has domain-like distribution with rather low summary fabric strength and 
trending mostly in the N-S direction that is similar to preferred macrofabric orientation in 
the upper till. However in finer resolutions divergence between preferred, statistically 
significant orientation in individual domains can be more than 45º. Like in vertical sections 
it is observed, that bands of well sorted material – sands – have the stronger microfabric 
than those composed of the diamicton. 

3.1.8. Lower Till: Sample ZP3 

The sample is taken from just below the position of the basal shear band of the 
upper till that can be interpreted by continuing the basal contact from parts of the section 
where sand is exposed below the upper till and the base of the upper till is identifiable.  

The horizontal section has strongly developed sand grain apparent microfabric in 
E-W direction that is consistent with macrofabric of the lower till. In large resolution 
several well-developed lineation domains with discontinuous contacts can be identified.  

Several domains of well developed often steeply dipping lineation can be 
observed in vertical sections as well. In some cases lineation in domains is bending but it is 
difficult to identify any clear circular structure. In other cases contrasting (cross-cutting) 
lineation is observed in neighbouring lineation domains that probably are an indication of 
the brittle deformation. In large generalisation an irregular shape of the diagrams suggest 
the non-random orientation of the elongated grains and presence of the several distinctly 
oriented grain populations. 

3.1.9. Lover till, sample ZP4 

The sample is taken from the lower diamicton unit. The microfabric in it is rather 
well developed with several distinct domains (Fig. 3.14). In low resolution microfabric is 
parallel to the macrofabric orientation. In finer resolution well expressed domain-like 
distribution is observed with fabric strength frequently reaching statistically significant 
values calculated according to Davis (2002). The observed microfabric is in a good 
agreement with calculated horizontal projection of macrofabric of the lower till, however 
the correlation in the vertical section is not so good. Microfabric bending and semicircular 
distribution is often observed in the verticals sections. 

In the vertical sections, like in the horizontal section strong domine-like 
microfabric structure with statistically significant lineation is evident. Domains are up to 
several millimetres large. The lineation in domains is not consistent, and in large resolution 
horizontal as well as vertical and tilted microfabric in domains is manifested. In large 
generalisation (R = 2.6 mm) only subhorizontal domains retain statistically significant 
lineation. Increasing generalisation level to R = 5.2 mm or more the lineation domains 
become mixed up and not a single diagram shows statistically significant lineation. 
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3.2. Plašumi gully site 

Plašumi gully site is located approximately 7 km SSW from tow of Jūrkalne. The 
geographical coordinates of Plašumu gully site are X = 003-36-847E, and Y = 063-16-
681N in LKS92 reference system, that is about 10 km NE of the town of Pāvilosta (Fig. 4.1 
and 4.2).  

The site is included in this study as the upper till is snug into diamicton spherules 
1–3 cm in diameter at the top of the outcrop in few meters long section (at 23,540 m) (Fig. 
3.15). In the field it has been supposed that the structures are denoted by cleavage that 
developed either due to rotation of diamicton domains in deforming bed, as proposed by 
van der Meer (1997) or as a result of some post-sedimentational process. To gain any 
additional indication about the formation of this structure, samples for thin sectioning were 
collected there. 

A common feature of the site is occurrence of the diapiric structures. Like in other 
sites, the diapirs are well pronounced apparent isometric structures. Diapirs are composed 
of brown silty and fine sand sediments as well as grey silt and clay. Some diapirs in this 
part of the cliff are composed of sandy silt and have complex deformational structures. 
Measurements of planar structural elements of the diapir show a slight offset of the 
structure in the direction close to the glacial shear direction, suggesting that after diapir 
formation it was deformed repeatedly due to direct glacial shearing. Some diapirs also 
contain more complex features, for instance, the so-called ‘mammoth trunk’ – a tilted dike 
structure originating from the upper part of the diapir (23,750-23,780 m). At another site 
(23,475 m) glaciotectonic rotation structures can be observed: silt and gravel material form 
concentric mélange like structure. The outcrop sketch with indicated sample collection site 
is given in Fig. 3.16. The reader is redirected to the earliest works for more discussion on 
structural geology and stratigraphy of the site (Zelčs et al., 2004). 

Figure 3.15. Spherules in the upper till at the Plašumi 
gully site. The photograph is 15 cm high and was taken 

at the sample collection site, see fig. 3.16. 

3.15. attēls. Sferoidāla augšējās morēnas struktūrā pie 
Plašumu gravas. Fotogrāfijas augstums ir 15 cm un tā
tika uzĦemta paraugu ievākšanas vietā, sk. 3.16. attēlu. 

At the upper part of the outcrop in between diapir structures lie till sediments, 
which are forming lens-like beds. The preferred macrofabric orientation in the upper till is 
dipping predominantly to the W, with S1 values from 0.5 to 0.7 (Table 3.1). 
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Plant remains which are characteristic the Early and Middle Pleistocene as well as 
for interstadial subarctic or boreal flora (Cerina, 1999) are reported from layered sands 
containing at the site. The OSL age of fine-grained sand collected from this part of coastal 
bluffs is 45 ± 4.2 ka (TL553) that is in good agreement with the OSL ages of fine-grained 
sand from other dating sites along the Baltic Sea cliffs of Western Latvia (Saks et al., in 
print). 

Table 3.1. Summary of the till fabric measurements at the Plašumi gully site (n – number 
of individual measurements; V1 – the mean clustering direction; S1, S2, S3 – eigenvalues) 

3.1. tabula. Morēnas makrolinearitātes mērījumu pie Plašumu gravas kopsavilkums (n – 
individuālo mērījumu skaits; V1 – vidējais grupēšanās virziens; S1, S2, S3 – eigenvērtības) 

Sample 
No 

Description of position n V1 S1 S2 S3

L00 Upper till with spherules at thin section sampling spot 
(section position 23,540m) 

60 277º/14º 0.695 0.229 0.076 

L01 Basal part of upper till (section position 22,785 m) 130 292º/18º 0.533 0.327 0.140 
L02 Sandy lacial diamictong and sand stretched fold below 

the upper till (section position 22,785 m) 
104 284º/32º 0.630 0.232 0.138 

L03 A melange-type sediments – mixture of gravel and 
dark grey silt below the upper till near rotation 
structure (section position 23,460 m) 

100 290º/23º 0.642 0.185 0.173 

L04 Upper till above banded glacial diamicton in base of 
upper till (section position 23,575 m) 

101 186º/26º 0.502 0.344 0.154 

L05 The upper part of the upper till (section position 
23,895 m) 

100 266º/30º 0.489 0.318 0.193 

3.2.1. The Samples  

The thin sections are prepared using non-coloured epoxy resin for impregnation, 
microphotographs are taken in non-polarized light, mosaic images are obtained using 
Photomerge technique, the large-square approach for data girding is used and the 
microfabric distribution statistics are plotted as data density plots (after Fisher et al., 1985), 
and preferred orientation significance calculated assuming von Miss distribution after 
Davis (2002). Additionally on a latter stage the microfabric statistics was recalculated 
using the eigenvalue approach as suggested by Thomason and Iverson (2006). 

Eight thin sections were prepared form the till with characteristic network of 
rectangular and spherical joints. Two microfabric aspects were studied in this case: the 
relationship of fractures or joints and microfabric preferred orientation and the dependence 
of considered grain size and apparent microfabric orientation. The boundaries of different 
size grains are set with step of 20.5 regarding the area of any grain as measured in the thin 
section. The grain size is expressed as A – equivalent circle diameter as used by Francus 
(1998). 

3.2.2. Till micromorphology 

Relatively straight vertical and horizontal as well as spherical joints are observed 
in thin sections. Except of one thin section no other peculirar structures on the background 
of massive diamicton is noted. The brief description of thin sections – the joint systems and 
microfabric – is given in Table 3.2. A general microfabric statistics is given in the 
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Appnedix 5, the summary orientation of different size grains is given in Appendix 6 and 
visualised in Figs. 3.17 and 3.18.  

In general – domain like microfabric preferred orientation is observed, with 
dominant moderately strong fabric in vertical sections and weak but consistent with 
macrofabric orientation in horizontal sections. In thin section Ps8-H a formation of 
authigenic minerals, likely carbonate precipitates, are observed. 

Figure. 3.17. The summary orientation data of different size classes in the horizontal thin 
sections from Plašumi gully site; the number beneath each diagram is the number of grains 

counted. The N is to the top. See Fig. 3.16 for location of the sampling site. 

3.17. attēls. Dažāda izmēra smilts graudu summārā orientācija horizontālajos 
plānslīpējumos no Plašumu gravas; skaitlis zem katras diagrammas norāda mērījumu 
skaitu; ziemeĜi ir uz augšu. Paraugošanas vietas izvietojumu atsegumā skat. 3.16. att. 

3.2.3. The preferred apparent orientation of different size grains 

In vertical sections usually the maximum spread of preferred orientation of 
different size groups is less than 20º (Appendix 6) and only in two cases the maximum 
spread of preferred orientation of different size groups is around 50º. There seems to be 
some systematic variation of preferred fabric orientation of different size groups (Fig. 
3.21), but this appearance is not reliable as the fabric strength is low: S1 usually below 0.6. 
Particularly the size classes A from 0.065 mm to 0.077 mm and from 0.109 mm to 0.130 
mm seem to have strongest deviation from average orientation to opposite directions. 

The spatial distribution of microfabric in different size classes usually is similar 
but is not repeated exactly. Sometimes even strong orthogonal preferred orientation is 
observed (Fig. 3.20). At the section Ps7-1-H, in case of resolution R = 5.2 mm, nearly 
orthogonal statistically significant microfabric is observed for size classes 0.092-0.109 
mm, and 0.109-0.130 mm in one out of more than 10 grid points with sufficient number of 
measured grains. Similar picture is observed for thin section Ps7-1-2 in case of A = 0.055-
0.065 mm and A = 0.065-0.077 mm. The most contrasting picture is observed in thin 
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section Ps7-2-H, where in size class A = 0.154-0.184 mm all five adjacent diagrams show 
rather strong preferred N-S orientation while in all other size classes E-W orientation is 
prevailing (Fig. 3.22).  

3.2.4. The microfabric and joint system 

The Plašumi gully vicinity study site was selected because of the particular globular 
or spherical till structure. Thin sections for the first instance were prepared to establish the 
relationship between the concave and straight vertical joints and the microfabric. 

In the thin sections predominantly vertical and horizontal joints are observed, but 
the round joints (representing spherules) are rare, found only in three out of eight thin 
sections. This indicates relatively low numbers of spherical joints. Perhaps uncommon 
appearance of the spherical joints facilitates the overestimation of their proportion.  

The distribution of preferred microfabric orientation does not seem to be associated 
with the orientation of any of the joints – nor the vertical or horizontal, nor the spherical 
ones. Few cases where the microfabric and joint orientation coincides seem to be 
coincidence rather than a rule (Fig. 3.20). 

Figure. 3.18. The summary orientation data of different size classes in the vertical thin 
sections from the Plašumi gully site; the number beneath each diagram is the number of 

grains counted. See Fig. 3.16 for location of the sampling site. 

3.18. attēls. Dažāda izmēra smilts graudu summārā orientācija vertikālajos plānslīpējumos 
no Plašumu gravas apkārtnes. Skaitlis zem diagrammas norāda mērījumu skaitu. Paraugu 

ievākšanas vietas izvietojumu atsegumā skat. 3.16. att. 
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A B C 

Figure 3.19. Position of joints and microfabric distribution. A and B – in the vertical thin 
section Ps7-1-2; C – from the upper till with spherical structure at the Plašumi gully site. 
The thin section is facing towards SE. Straight vertical and horizontal as well as spherical 
joints are observed in the section. The correlation of preferred microfabric orientation and 

the spherical joints is not observed. Used symbols are explained in Tables 1 and 2. See Fig. 
3.16 for location of the sampling site. 

3.19. attēls. Plaisu novietojums un mikrolinearitātes sadalījums. A un B – vertikālajā
plānslīpējumā Ps7-1-2; C – no Plašumu gravas apkārtnes augšējās morēnas ar raksturīgu 
sfērisku struktūru. Plānslīpējums ir vērsts uz DA. Plānslīpējumā ir novērojamas taisnas 

vertikālas un horizontālas, kā arī sfēriskas plaisas. Plānslīpējumā nav konstatēta nozīmīga 
korelācija starp sfērisko plaisu un mikrolineartitātes dominējošo orientācijas virzieniem. 

Izmantotie apzīmējumi ir paskaidroti 1. un 2. tabulās. Paraugu ievākšanas vietas 
izvietojumu atsegumā skat. 3.16. att. 

It can be concluded that the spherical joints are not associated with processes 
associated to till sedimentation and deformation. It might be speculated that the desiccation 
of till in specific conditions could lead to formation of such a structure. 

It was suggested (Stinkulis, pers. com.) that the spherules are formed as a result of 
carbonate recrystallization. Indeed on possible carbonate mineral precipitated was 
observed in the thin section Ps8-H; however it is unlikely that formation of such a small 
structures could result in development of spherical joints to extent observed. 

3.2.5. The microfabric strength and relationship to macrofabric 

At the thin section sampling spot macrofabric (elongated pebbles) is strong and 
unidirectional V1 dip of 14º to the W (277º) with three dimensional S1=0.695 and S2=0.229 
(60 measurements). The dip angle probably is somewhat enhanced as a result of 
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simultaneous formation of diapirs as suggested by Saks et al (accepted for publication). 
The upper till macrofabric orientation in other measurement spots at this site is similar.  

The apparent microfabric in general in all samples is similar (Appendix 5): in 
horizontal sections it has a weak E-W preferred orientation with S1 values 0.52 to 0.53; in 
vertical sections the microfabric is somewhat stronger (V1=0.55 to 0.56). The apparent dip 
angle in all cases is smaller that the 20º (referring to horizon), however the realistic 3D dip 
direction of microfabric can not be restored confidently as few studied samples give 
contrasting results.  

Thus it can be concluded that the preferred microfabric orientation is similar to the 
macrofabric however much weaker than the macrofabric, especially in horizontal sections. 
Actually, given that the S1 value for microfabric in horizontal section is only slightly above 
the indication of random orientation – 0.5 – it is surprisingly that in all three cases the 
preferred microfabric orientation is in E-W direction and deviating less than 20º from thin 
section to thin section. It can be speculated that the microfabric in this site is strongly 
disturbed by some small-scale post-sedimentational process that left macrofabric largely 
intact. 

A B 

Figure 3.20. Comparison of the preferred orientation of the apparent microfabric in two 
neighbouring size classes – A and B – in horizontal thin section Ps7-2-H. The north is to 

the top of the image, the grid resolution – R= 5.2 mm. Note almost orthogonal 
microfabric differences in the central part of the image. Such distribution is an exception 

rather than a rule. Used symbols are explained in tables 1 and 2. See Fig. 4.1.8. for 
location of the sampling site. 

3.20. attēls. Dominējošā mikrolinearitātes orientācijas virziena salīdzinājums divās 
līdzās esošās smilts graudu izmēru klasēs – A un B – horizontālajā plānslīpējumā Ps7-2-

H, ziemeĜi attēlā ir uz augšu, režăa izšėirtspēja – R = 5,2 mm. Ievērojiet gandrīz 
perpendikulāro mikrolinearitātes dominējošo virzienu attēla vidusdaĜā. Šāds 

mikrolinearitātes sadalījums drīzāk ir izĦēmums, nevis likumsakarība. Izmantotie 
apzīmējumi ir paskaidroti 1. un 2. tabulās. Paraugu ievākšanas vietas izvietojumu 

atsegumā skat. 3.16. att. 



- 85 -

0

90

180

0.055-0.065 0.065-0.077 0.077-0.092 0.092-0.109 0.109-0.130 0.130-0.154 0.154-0.184 0.184-0.218

Equivavlent circle diameter (mm)

P
re

fe
re

d 
or

ie
nt

at
io

n

Ps6-2

Ps7-1-1

Ps7-1-2

Ps7-2-1

Figure 3.21. The preferred orientation of different size grains as observed in the vertical 
thin sections from samples collected at the Plašumi gully site. See Fig. 3.16 for location 

of the sampling site. 

3.21. attēls. Dažādu izmēru smilts graudu šėietamā orientācija vertikālajos 
plānslīpējumos no paraugiem, kas ievākti Plašumu gravas apkārtnē. Paraugu ievākšanas 

vietas izvietojumu atsegumā skat. 3.16. att. 
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Figure 3.22. The preferred orientation of different size grains as observed in horizontal 
thin sections from samples collected at the Plašumi gully site. See Fig. 3.16 for location 

of the sampling site. 

3.22. attēls. Dažādu izmēru smilts graudu šėietamā orientācija horizontālajos 
plānslīpējumos no paraugiem, kas ievākti Plašumu gravas apkārtnē. Paraugu ievākšanas 

vietas izvietojumu atsegumā skat. 3.16. att. 
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3.3. Strante site 

The cliff section at Strante is located on the Baltic Ice Lake plain, approximately 
5.0 km ENE of the town of Pāvilosta. The geographical coordinates of Strante site are X = 
003-32-100E, and Y = 063-11-500N in LKS92 reference system. Here the maximum 
elevation of the plain is ca. 15 m. Glacial and glaciolacustrine sediments of the Middle 
Weichselian through the Late Weichselian age in places are overlain by a thin cover of 
younger glaciolacustrine and aeolian sediments, and occasional boulder pavements are 
outcropped in a distance of 0.6 km (Saks et al., 2004). At the northern and southern flanks 
of the outcrop deformed sedimentary strata is overthrusted by the series of till sheets. The 
thrusting surfaces are indicated by sandy stringers in the till (see Saks et al., accepted for 
publication for more details).  

Large portion of the section is built up by even 6 m thick, well consolidated sandy 
diamicton that contains fine grained sand, silt and occasional gravel grains (Fig. 3.23). This 
diamicton forms almost 120 m wide spans of the outcrop. Distinct planar foliation is traced 
within the diamicton and near diapir structures it becomes slightly bended. Rounded clasts 
of unconsolidated laminate sediments with signs of rotation are occasionally fond within 
certain levels of sandy diamictone (Fig. 3.24). Preferred orientation of elongated gravel 
grains (macrofabric) due to very low gravel contents was done over 30 m long distance of 
the outcrop. The resultant preferred orientation has weak maxima in the NNE-SSW (n = 
101; S1 = 0.393 V1 = 268°/35°) which is in good agreement with overall glacier movement 
directions in this area (Gaigalas et al., 1967; Zelčs, Markots, 2004; Boulton et al., 2001a). 
At the base of the sandy diamicton fine sand and coarse silt sediments are deformed into 
traction folds and rotation structures with dextral (top to the left) shear sense. 

Figure 3.23. The sand rich overconsolidate diamicton interpreted as local deformation till 
at the Strante site. The stick at the hands of author is 5.0 m long. The location of the 

image is approximately at the 30,700 m profile mark indicated in the figure 3.25. 

3.23. attēls. Smilšains, spēcīgi konsolidētais diamiktons Strantes atsegumā, kas ir 
interpretēts, kā lokāla deformācijas morēna. Lata autora rokās ir 5,0 m gara. Fotogrāfija ir 

uzĦemta aptuveni pie 30 700 m garkrasta profila atzīmes, kas ir norādīta 3.25. attēlā. 
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Figure 3.24. A soft sediment inclusion with signs of rotation and shearing in the sandy 
diamicton at the Strante site. The handle of knife is some 10 cm long. The structure 

was observed near 30,660 m profile mark indicated in the Fig. 3.25. 

3.24. attēls. Nekonsolidētu nogulumu ieslēgums ar rotācijas un bīdes pazīmēm 
smiltšainajā diamiktonā Strantes atsegumā. Naža spals ir aptuveni 10 cm garš. 
Struktūra tika novērota aptuveni pie 30 660 m garkrasta profila atzīmes, kas ir 

norādīta 3.25. attēlā. 

The origin of sandy diamicton was sedimentological clue: glaciolacustrine 
sedimentary processes as well as glaciotectonic origin was proposed (O. ĀboltiĦš, pers 
comm., 2003). To supplement ordinary field description a set of thin sections were 
prepared from these sediments. After several sessions of the fieldwork and considering the 
results of micromorphological investigation this unit is interpreted as a glaciotectonite, as 
described in Benn and Evans (1996) or deformation till according to Dreimanis (1989), 
Saks et al. (accepted for publication). 

3.3.1. The samples 

A set of four samples forming vertical profile was collected from the sandy 
diamicton assumed as the local deformation till, and the deformed sediments at its base at 
the 30,730 m of the coastal profile. Two additional samples are included in the study 
collected at the 30,710 m of the costal profile (Fig. 3.25). The samples are listed and 
shortly described as well as the summary microfabric statistics presented in the Appendix 
7. The general statistics of the orientation of different-sized grains are summarised in the
Appendix 8. 
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The thin sections are prepared both using non-colourred epoxy resin and coloured 
resin for impregnation. Microphotographs are taken in cross-polarized light and in some 
cases with plain light; mosaic images are obtained using Photomerge technique in the 
initial stage of the study and using “buffer lines” in a latter stage; the large-square 
approach for data grid is used and the microfabric distribution statistics are plotted as data 
density plots (after Fisehr et al., 1985) and preferred orientation significance calculated 
according the eigenvalues method suggested by Thomson and Iverson (2006).

3.3.2. The summary preferred microfabric orientation

In all except one vertical sections two-modal nearly orthogonal preferred 
microfabric orientation is observed, and subhorizontal mode is the dominant one (Fig. 
3.26). The exception is section No.5n-1 that comes from macroscopically deformed fine 
sand – coarse silt sediments below the considered sandy diamicton and thus represents a 
different sediment unit. In most sections the two modes are observed in all resolution 
levels (see Fig. 3.27), indicating that the bimodal distribution is not the product of 
combination of several pronounced preferred orientation domains, but rather is an intrinsic 
property of the microfabric preferred orientation of the sandy diamicton. Two-modal fabric 
is observed in the data sets obtained by different methods as well and is not observed in 
horizontal sections so the possibility that it is an artefact of the image processing can be 
excluded. 

Due to bimodal nature of the microfabric neither V1 (summary orientation) nor S1

(fabric strength) correctly describe the microfabric data set as the statistical procedure used 
is designed for von Miss (unimodal, normal) distribution. As a result in most cases the 
eigenvalue statistics does represent the preferred orientation (V1) of the strongest mode but 
the fabric strength indication (S1) is not reliable. 

In most of the horizontal sections rather weak microfabric (S1<0.6) trending in E – 
W direction is observed (Appendix 7). This coincides with the macrofabric orientation of 
the sandy diamicton (V1=268º; S1=0.393; n=101). It must be noted, that due to very low 
gravel content in the sandy diamicton, macrofabric was measured across outcrop distance 
of nearly 80 m and likely is biased towards the orientation normal to the outcrop surface 
(e.g. Klein, 2002), that it is to the E – W direction. 

The sample No. 5n, collected from the macroscopically deformed sediments at the 
base of the sandy diamicton, has the strongest observed microfabric. Often strongest 
microfabric is common in the sediments with most homogeneous grain size that is the case 
with this sample as well. Additionally the deformation porches, possibly, enhanced the 
initial sedimentary fabric, resulting in extremely strong microfabric. 

3.3.3. The preferred orientation of different-size grains 

Some variations of the preferred orientation and fabric strength of different size 
grains are observed, but the spread of dominant orientation rarely exceeds 45° (Appendix 
8, Fig. 3.28).  

It must be noted, that due to different image acquisition techniques (micro-
photographing in plain or cross-polarised light), differed thin section thickness, variations 
of digital image exposure and thresholding levels, the grain size classes does not exactly 
mach for different thin sections as the grain boundaries because of mentioned factors may 
slightly migrate. 
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A 

B 

Figure 3.26. The summary microfabric preferred orientation in vertical (A) and horizontal 
(B) thin sections of the sandy diamicton at the Strante site. The number of measured grains 

in any diagram is at least 1000. The facing direction of the vertical sections is indicated 
below the section number; the orientation of the diagrams of horizontal sections is 

corrected so that the north is at the top. Note the two nearly orthogonal modes in almost all 
vertical sections and none in horizontal sections. Symbols are explained in Table 2. 

3.26. attēls. Kopējā mikrolinearitātes orientācija vertikālos (A) un horizontālos (B) 
plānslīpējumos, kas izgatavoti no Strantes atseguma smilšainā diamiktona. Katrā

diagrammā ir iekĜauti ne mazāk kā 1000 graudu garenasu mērījumi. Vertikālo 
plānslīpējumu vērsums ir norādīts zem parauga numura, horizontālo plānslīpējumu 

diagrammu augša ir vērsta uz Z. Gandrīz visu vertikālo plānslīpējumu diagrammās ir 
novērojami divi, gandrīz ortogonāli mikrolineartitātes maksimumi, kas savukārt nav 

novērojami horizontālo plānslīpējumu diagrammās. Izmantotie apzīmējumi ir paskaidroti 
2. tabulā. 
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Figure 3.27. The orientation of microfabric modes, indicated on the vertical axis and their 
relative strength indicated on the horizontal axis of all diagrams in different grid 

resolutions grouped along horizontal axis in the thin section No.4n-1. The bimodal nature 
of the fabric distribution that is not manifested in a set of the summary orientation 

calculated according to eigenvalue method (Appendix 7 and 8). An orientation mode in 
here is defined as a mean direction of the sector in a diagram where data density exceeds 1 

standard deviation for given diagram and modes that are less than 15° apart are merged 
together. The mode strength is defined as maximum data density with given mode. 

3.27. attēls. Mikrolinearitātes modu orientācija uz vertikālās ass un to relatīvā izteiktība uz 
horizontālās ass visās diagrammās ar dažādiem režăa soĜiem, kas ir grupēti pa vertikālo asi, 
plānslīpējumā Nr. 4n-1. Attēlā labi parādās mikrolinearitātes orientācijas bimodālā daba, 
kas nav redzama aprēėinot summāro orientāciju, izmantojot eigenvektoru paĦēmienu (7. 
un 8. pielikumi). Šeit orientācijas moda ir definēta kā vidējais dominējošās orientācijas 

virziens diagrammas sektorā, kur datu blīvums pārsniedz vienu standartnovirzi šai 
diagrammai un modas, kas ir tuvāk kā 15°, ir sapludinātas kopā. Modas relatīvā izteiktība 

ir definēta, kā maksimālais datu blīvums dotajā modā. 

Largest fabric strength variations in vertical sections are due to the relative 
strength variations of subvertical and sub-horizontal modes in different grain size fractions. 
These variations significantly affect the preferred orientation in only two vertical sections 
(Nos. 3n-1 and 4n-1) where the maximum spread of summary orientation approaches 45º.  

In vertical section trend is observed that the bimodal distribution is more 
pronounced for larges grain sizes (Fig. 3.29). However it is difficult to assess whether this 
is due to clearer visualisation as a result of smaller numbers of grains and more precise 
fabric measurement for the largest grains or general trend towards stronger fabric for the 
largest grains noted elsewhere. The summary orientation is deviating from subhorizontal 
for medium to large grain size fractions in some sections and rarely in the fine-grained 
fractions. This is the result of stronger subvertical mode and there seems to be a trend that 
largest grains have better expressed subvertical mode. 
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Figure 3.28. The microfabric preferred orientation (A and B) and respective fabric strength 
(C and D) for vertical and horizontal sections. Fabric strengthening for the largest grains 
and fabric strength minimum at 0.092 mm to 0.109 mm equivalent disk diameter for the 

horizontal section is noticeable. No systematic variations of the dominant orientation 
direction are noted. 

3.28. attēls. Mikrolinearitātes dominējošais orientācijas virziens (A un B) un atbilstošā
linearitātes izteiktība (D un C) vertikālajos un horizontālajos plānslīpējumos. Attēlos 

iespējams novērot linearitātes izteiktības pieaugumu virzienā no mazākajiem uz 
lielākajiem graudiem un izteiktības minimumu horizontālajiem plānslīpējumiem no 0,092 

mm līdz 0,109 mm ekvivalenta diska diametra klasē. Dominējošā orientācijas virziena 
sistemātiskas novirzes nav novērotas. 

In general the preferred orientation of different size grains in the horizontal 
section is more variable than in the vertical ones (Fig. 3.28). There are two horizontal 
sections (Nos. 4n-H and 01k-H) with large spread (up to 90º) of preferred summary 
orientation of different size grains. This is likely due to lover fabric strength in the 
horizontal sections. 

In a background of the increasing fabric strength for the large grains in prominent 
3 out of 5 horizontal sections a fabric strength minimum is observed at the grain size range 
of equivalent disk diameter 0.092 mm to 0.109 mm that corresponds to the extreme values 
of dominant orientation (Fig. 3.28). A similar trend is not observed in the vertical sections. 

3.3.4. The spatial distribution of microfabric  

Two microfabric spatial distribution patterns can be identified in the vertical 
sections: (1) fold-like distribution and (2) rather uniform bimodal distribution with local 
variations due to interplay of subhorizontal – subvertical mode strength. 
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A B 

Figure 3.30. Microfabric in the deformed sandy silt sediments below the sandy diamicton 
at the Strante site, sample No. 5n-1: A – thin section microphotograph acquired with cross-
polarised light; B – respective microfabric distribution. Observe the fold like distribution 
of microfabric in lover, homogeneous part of thin section that is probably formed due to 
reorientation of primary sedimentary microfabric during the deformation. Used symbols 

are explained in Table 2. 

Attēls 3.30. Mikrolinearitāte deformētajos smilšaina aleirīta nogulumos, kas atrodas zem 
smilšainā diamiktona Strantes atsegumā (plānlsīpējums Nr. 5n-1): A – plānslīpējumu attēls 

krustiski polarizētā gaismā; B – atbilstošais mikrolinearitātes sadalījums. Ievērojiet 
krokasveida mikrolineariātes sadalījumu apakšējā, homogēnajā plānslīpējuma daĜā, kas 

domājams ir veidojies deformācijas rezultātā, kuras laikā tika  pārorientēta primārā
sedimentācijas mikrolinearitāte. Izmantotie apzīmējumi ir paskaidroti 2. tabulā. 

The first case is observed in sections Nos. 4n-1 and 5n-1. The second case is 
observed in sections Nos. 01k-1, 01k-2, 02k-2, 2n-2 and 3n-2 with horizontal mode being 
the strongest one ,and in thin sections Nos. 02k-2, 2n-1 and 3n-1 where strength of the 
subvertical mode is comparable to the strength of the horizontal one.  

Microfabric parallel to the lamination visible in macroscale as well as in thin 
section is observed in section No. 5n-1. In the homogenous lower part of this thin section 
microfabric denotes fold-like structure (Fig. 3.30). This sample is from the 
macroscopically deformed sediments at the base of the sandy diamicton. The microfabric 
likely formed due to plastic sediment deformation, particularly – extension at the upper 
part of the section, and is superimposed on the sedimentational fabric.  
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A B 

C D 

To be continued in the next page
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E 

Figure 3.31. Microfabric distribution in the thin section No. 4n-1 from the lower part of 
the sandy diamicton: A – thin section microphotograph acquired with cross-polarised light; 
B, C and D – respective microfabric distribution with different grid resolution; E – close up 

view of the outlined square in image A. Domain-like distribution of preferred grain 
orientation is visible in case of grid resolution R = 0.6 mm (B), but fold-like distribution 

emerges in case of grid resolution R = 1.3mm (C) and R = 2.6 mm (D), that probably 
represents fine deformation structures in the sediments. The black line in images B, C and 

D indicates a possible plane of brittle rupture that does not affected microfabric 
distribution significantly, with close-up view in image E. Note that the microfabric 

distribution is in images B is calculated with minimum number of measurements at the 
single grid point set to 10 that is too little for reliable estimation of preferred orientation 

strength. Used symbols are explained in Table 2. 

3.31. attēls. Mikrolinearitātes sadalījumus plānslīpējumu Nr. 4n-1 no smilšainā diamiktona 
apakšējās daĜas: A – plānslīpējumu attēls krustiski polarizētā gaisām; B, C un D – 

atbilstošais mikrolinearitātes sadalījums ar atšėirīgu režăa soli; E – pietuvināts skats A 
attēlā izzīmētajam laukumam. Gadījumā ar mazu režăa soli R = 0,6 mm (B) ir redzams 

domēnu tipa mikrolinearitātes sadalījums, bet palielinot režăa soli (C un D) parādās 
krokveida mikrolinearitātes sadalījumus, kas domājams atspoguĜo maza izmēra nogulumu 

deformācijas struktūras. Melnā līnija B, C un D attēlos norāda iespējamo trausla pārrāvuma 
plakni, kas nav būtiski ietekmējusi mikrolinearitātes sadalījumu, kas ir palielināta E attēlā. 
Mikrolinearitātes orientācija attēlos B aprēėināta katrā diagrammā iekĜaujot ne mazāk kā
10 mērījumus, kas nav pietiekams liels skaits, lai ticami novērtētu linearitātes izteiktību. 

Izmantotie apzīmējumi ir paskaidroti 2. tabulā. 

In the sample No. 4n-1 fold-like microfabric distribution is observed (Fig. 3.31). 
This sample was collected just above the base of the sandy diamicton. Probably at the base 
of the base of sandy diamicton traction folds developed and as a result fold-like 
microfabric deformation is observed in the thin section. 

Foliation of the sandy diamicton that is detected in the field can also be observed 
in some thin sections either as laminas with increased content of the fines or bands of large 
concentration of the coarse sand grains. For example a foliation or attenuated fold 
structures are observed in thin section No. 01k-2, and the microfabric preferred orientation 
is partially coinciding with lamination. 

In horizontal sections a domain-like microfabric distribution is observed with 
domain size just few mm. The exception is thin section No. 2n-H (figure 3.32) and to a 
lesser extent thin section No. In the vertical section of the same sample No. 2n microfabric 
distribution that could be connected to the microfabric distribution in the section No. 2n-H 
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is not noted. Similar but less pronounced distribution is observed in the thin section No. 
02k-H, where half of the thin section has rather strong and uniform fabric (occasionally 
S1>0.7) trending approximately from N to S. The other half has less consistent and 
generally weaker (S1<0.6), with summary orientation in NE-SW. The summary preferred 
orientation in the section is at the right angle towards the dominant orientation in the most 
of other horizontal sections. In the vertical section of the same sample No. 2n microfabric 
distribution that could be connected to the microfabric distribution in the section no.2n-H 
is not noted. Similar but less pronounced distribution is observed in the section no.02k-H. 

A B C 

Figure 3.32. The horizontal thin section No. 2n-H: A – thin section microphotograph 
acquired with cross-polarised light; B and C– respective microfabric distribution with 

different grid resolution. Two distinct orientation domains are evident The image top is to 
the 330º. Note that the microfabric distribution is in images B are calculated with minimum 

number of measurements at the single grid point set to 10 that is too little for reliable 
estimation of preferred orientation strength. Used symbols are explained in Table 2. 

3.32. attēls. Horizontālais plānslīpējums Nr. 2n-H: A – plānslīpējumu attēls krustiski 
polarizētā gaismā; B un C – atbilstošais mikrolinearitātes sadalījums ar atšėirīgu režăa soli. 

Divi krasi atšėirīgi orientācijas domēni ir redzami attēlos. Attēla augša ir vērsta uz 330°. 
Mikrolinearitātes orientācija attēlos B aprēėināta katrā diagrammā iekĜaujot ne mazāk kā
10 mērījumus, kas nav pietiekams liels skaits, lai ticami novērtētu linearitātes izteiktību. 

Izmantotie apzīmējumi ir paskaidroti 2. tabulā. 

In several cases feature that can be described as “glace ceiling” is noticed: a large 
number of diagrams from the same thin section with rather wide distribution of V1 values 
show fabric strength (S1) values up to certain level and very few or non diagram has higher 
S1 value (Fig. 3.33, Appendix 8). The S1 value for ceiling usually is close to 0.7. The origin 
of such distribution is not clear but it might be related to the maximum value of the shear 
deformation that the sediments have been subjected to. Alternatively the bimodal preferred 
orientation nature might preclude the S1 values for any single diagram to exceed the 
threshold value or the noise introduced by the data acquisition plays a role. 
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3.3.5. Grain shape considerations 

Crude grain shape analysis was done using a stereomicroscope in order to assess 
the effects of the grain shape influence on the apparent microfabric. Three categories of 
grain shapes were defined: (1) isometric, (2) elongated, and (3) oblate (disk-shaped) grains 
respectively. Based on 199 counts, the size fraction 0.1-0.125 mm of the sandy diamicton 
consists of two thirds (68%) isometric grains, 16% of elongated and 16% – oblate grains.  

Roughly 50% to 55% of all objects automatically measured and corresponding to 
the selected size criterion (125 to 2000 pixels or 0.055 mm to 0.220 mm equivalent disk 
diameter) have elongation ratio large than 1.5. This proportion, given the fundamental 
differences in estimation methods, is similar to the estimated summary proportion of 
elongated and oblate grains in the considered sediments. The large proportion of the 
apparently elongated grains in the thin sections most likely is a result using of the different 
methods. It must be noted that in case of thin sections the sample size is usually several 
thousand of sand grains. 
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0

0,2

0,4

0,6

0,8

0 30 60 90 120 150 180
V1

S1

B 

Thinsection no.02k-2

0

0,2

0,4

0,6

0,8

0 30 60 90 120 150 180
V1

S1

Figure 3.33. An example of the microfabric distribution with “glass ceiling” in the thin 
section No. 2n-1 (A); normal microfabric strength distribution in the thin section No. 02k-2 

(B) in a case of grid resolution R = 2.6 mm. 

3.33. attēls. Mikrolinearitātes sadalījuma piemērs ar „stikla griestiem” plānslīpējumā Nr. 
2n-1 (A) un normālais sadalījums plānslīpējumā Nr. 02k-2 (B), ar režăa soli R = 2,6 mm. 

If most of the oblate grains will lie in the horizontal plane as expected in a 
simplest case then in the horizontals sections compared to the vertical ones smaller 
proportion of measured grains will be apparently elongated. Indeed, in the vertical sections 
the average proportion of measured objects with elongation ratio larger than 1.5 is 54% 
(standard deviation, SD = 2.1; 12 thin sections) comparing to around 50% (SD = 2.3; 5 thin 
sections) in the horizontal thin sections. This slight difference might be of random origin, 
e.g. determined by thin section quality or measurement method. However if it is not an 
artefact of measurement inaccuracy, it supports the assumption that some part of oblate 
particles are lying in the horizontal plane, thus contributing to the fabric measured in 
vertical sections and not contributing to the fabric measured in horizontal sections. 

The position of the oblate grains in the subhorizontal plane is supported by 
findings of Li et al. (2006) whose studies of the macrofabric of the glacial deposits in the 
Upper Urmi River valley, Tian Shan, China indicate that clast a-b planes have stronger 
fabric than the a-axis fabric.  
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3.4. Sensala site 

The major Sensala site description and results of the paleo-glaciological studies 
are given in paper Saks et al. (2008). The Sensala site is located 10 km southwest of the 
town of Ventspils (Fig. 3.34). The geographical coordinates of Sensala site are 
approximately X = 003-46-100E, and Y = 063-44-900N in LKS92 reference system. It 
forms the northernmost stretch of the chain of the coastal bluffs along of the Baltic Sea 
coast of Western Latvia. Up to 18 m high coastal bluffs at Sensala provide insight into 
Pleistocene glacial and non-glacial deposits for about a distance of 3.5 km. 

The exposed Quaternary sequence comprises six distinct lithofacies: (1) dark-
greenish grey silt, (2) pinkish grey-fine grained sand with silt interbeds, (3) contorted 
lenses of sand and gravel, (4) lower and (5) upper till units, and (6) a continuous layer of 
sand and gravel. Glacioaquatic and marine deposits, as well as two different till units are 
encountered at the outcrop (Fig. 3.34). 

Dark-greenish grey massive silt composes diapirs and partially overthrusted slabs. 
On the faulting planes silt has been mixed with diamicton. The silt has a breccia-like 
microscale structure with angular to subrounded dark silt domains resting in a lighter 
colour matrix.  

Figure 3.34. Sketch of the principal 
geological structure observed in the Sensala 

outcrop, see Saks et al. (2007) for more 
detailed section. 

3.34. attēls. Principiāla Sensalas atsegumā
novērotās ăeoloăiskās uzbūves skice. 
Detalizētu griezumu skatīt Saks et al. 

(2007). 

Pinkish grey fine-grained sands is commonly present in the lowest part of the 
outcrop, particularly on either side of the complexly deformed and dark-greenish grey silt 
cored diapir at the central part of the section. The sediment sequence has a rhythmic 
structure with up to 1 m thick fine-grained sandy layers interbedded by approximately 20 
cm thick silty material. Occasionally also brownish clay interbeds are found in the sand 
strata. In some layers wave current ripples, liquidification and water escape structures are 
common. Commonly fine-grained sand is deformed into 20 to 40 m long and up to a few m 
high gentle folds. 

Sand wedge structures were found cutting through glaciotectonic structures. 
According to French and Guglielmin (2000) such structures indicate that the sediment 
surface has been exposed to a cold and dry non-glacial environment. 

According to OSL dates, the fine grained sands were deposited around 40 ka BP. 
The OSL age for samples TL 501, TL 502 and TL 503 was determined as 43±5.0 ka, 
45±7.7 ka and 44±10 ka accordingly (Saks et al., 2007). A similar age of fine-grained sand 
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was obtained in three o`ther places 20 to 40 km S, SW of the Sensala site (Saks et al., in 
print). 

Up to 20 m long and 5 m thick patches of intensively folded and distorted sand 
and gravel were observed in the highest par of the section. In most cases this unit overlaps 
both above-considered litofacies. 

Two types of diamicton are observed in the glaciotectonicaly contorted sequence: 
the lowermost loose and sandy diamicton considered as waterlain or flow till, and the 
upper one clay-rich diamicton resembling basal till. Pieces of these tills are also observed 
below the silt slab. Drag casts and folds and several tens of centimetres thick layers of very 
silty diamicton are observed on the contact of silt and diamicton revealing that the silt slab 
was dragged over the till. 

The upper till unit is up to 4 m thick, continuous dark olive-grey diamicton – 
interpreted as basal till. Occasionally several metres long and a few millimetres to several 
centimetres thick sand or silt intercalations (stringers) are observed. Deformation of the till 
layer implies active glacier movement after deposition of the till. In places the uppermost 
part of the lower basal till has banded structure. Drag folds and boudinage structures are 
observed along with other minor shear zone structures and it is evident that the diamicton 
acted as more competent material  

The mapping of the elevation of the upper till surface in the vicinity of the outcrop 
revealed a 500 m vide and almost 4 m high ridge stretching from W to E. The ridge 
stretches perpendicular to the main stress direction as shown by a glaciotectonic structure 
analysis at the outcrop. The outcrop itself intersects the ridge approximately under 80-100º 
angle. The most pronounced deformation with the deepest dêcollement surface is in the 
northern side of the outcrop. The dêcollement line gradually rises in the southern direction. 
The maximum thickness of till also occurs along the deepest deformation layer.  

The section is covered by continuous layer of sand and gravel or fine sand. These 
are postglacial near shore nearshore sediments, in some places is covered by eolian sand 
with buried soil horizons.  

The axis of folds and gravel grain fabric in the core of folds are oriented 
predominately in the NW-SE direction, suggesting NE – SW glacial stress direction. The 
dêcollement line of dynamic structures rises from NE to SW, suggesting a decrease of 
glacial stress to SW. The stretched nature of folds and the presence of augen-like structures 
indicate that folding was due to the drag of a moving glacier rather than lateral stress. 
Therefore it can be concluded that fold orientation represents the local direction of the ice 
movement. 

Measurements of till macrofabric show inconclusive results with preferred 
orientation in W-E as well as N-S direction, however the strongest fabric (S1 values) are 
for diagrams with W-E preferred orientation (Table 4.11). 

Saks et al. (2007) explained the formation of this complex situation as follows:  
1) The silty sand sediments were deposited on top of fine grained basin 

sediments Middle Weichselian time;  
2) At the ice margin water lain and flow till sequence formed; 
3) Advancement of glacier and sole deformation forming diapir-like structures 

and folds; 
4) Deposition of the upper till unit with stress direction different from that of 

previous phase; 
5) Repeated deformation of the upper till layer imposing shearing structures and 

reorientation of till fabric. 
During deglaciation in Western Latvia large Baltic ice stream split in to several 

ice lobes that terminate in smaller glacier tongues (Zelčs, Markots, 2004). The advance of 
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the tongues in the first phases occurred through several ice flows, which protruded into the 
terrain, and deformed the soft glacier bed. Evidently, the Sensala outcrop reflects the 
remains of an ice marginal formation – a lateral moraine. During glacier propagation all 
frontal topographic features were removed but the radial patterns as lateral moraines are 
partly preserved. 

Glacier dynamics in the area have been mostly controlled by glacier bed rheology, 
which resulted in an assemblage of specific glacier landforms and glaciotectonic features 
(Saks et al., 2007): overridden, partly preserved lateral moraine lineation and its 
unidirectional stress pattern, and diapiric structures formed at the glacier margin. From the 
outcrop studies it is concluded that since the glacier started to advance it became soon 
decoupled from the glacier bed, and the shear zone developed near the glacier bed. The 
upper till was deposited continuously, but the glacier was still active also after deposition 
of the till as in several places a comparatively thicker shear zone was developed in the till 
layer. 

Table 3.3 Summary of till fabric measurements at Sensala site (n – number of individual 
measurements; V1 – the mean clustering direction; S1, S2, S3 – eigenvalues) 

3.3. tabula. Sensalas atsegumā oĜu garenasu mērījumu rezultātu apkopojums (n – 
individuālo mērījumu skaits; V1 – vidējais grupēšanās virziens; S1, S2, S3 – eigenvērtības) 

Sample 
No. 

Description of position n  V1 S1 S2 S3

080 Upper till, at section position -17,443 m, 
stone-rich diamicton connected to sand-
gravel lens in the upper till 

60 308º/21º 0.487 0.339 0.174 

009 Upper till, at section position -17,600 m 31 285º/21º 0.742 0.204 0.054 
074 Upper till, at section position -17,600 m 100 256º/9º 0.618 0.285 0.097 
013 Water-lain till, at section position -17,745 

m 
30 338º 0.659 0.245 0.096 

045 Upper till, at section position -17,745 m, 
near palaeoslump structure of the till, at 
the middle of 4 m thick till unit 

80 354º/24º 0.492 0.392 0.116 

047 Upper till, at section position -17,805 m 70 160º/4º 0.587 0.305 0.108 
029 Upper till, at section position -17,885 m 30 265º/14º 0.529 0.345 0.126 
022 Upper till, at section position -17,925 m 31 272º/19º 0.751 0.184 0.068 
077 Dark grey till unit at low laying outcrop 

1.5 km to N of centrals Sensala outcrop -
19,600 m 

62 287º/0º 0.646 0.213 0.141 

3.4.1. The samples  

Sample for thin section preparation from the upper till are collected near the till 
macrofabric measurement sites (samples Nos. 072, 076b, 071 at -17,600 m of coastal 
profile) or sandy interbeds in the upper till (samples Nos. 043, 044 at -17,550 m of coastal 
profile, and  Nos. 091, 092 at -17,685 m of coastal profile). Two samples (Nos. 017 and 
042) collected from lower, waterlain till at the Sensala site are included in this study as 
well.  

The thin sections are prepared both using non-coloured epoxy resin but in some 
cases dyed resin is used for impregnation; microphotographs are taken in cross-polarized 
light and in some cases with plain light; mosaic images are obtained using Photomerge 
technique as well as the using “buffer lines” to separate individual images; the large-square 
approach for data girding is used and the microfabric distribution statistics are plotted as 
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data density plots (after Fisehr et al., 1985) and preferred orientation significance 
calculated according the eigenvalues method suggested by Thomson and Iverson (2006). 
The summary microfabric measurement results are presented in Appendix 9. 

3.4.2. Upper till, samples Nos. 043 and 044 

Samples Nos. 043 and 044 are taken from the middle part of the upper till bed, 
near the -17,550 m mark at the Sensala site. The samples are prepared using non-coloured 
impregnation epoxy resin and microfabric data are acquired using thin section images 
acquired with crossed polarised light. The eigenvalue method is used for calculation the 
microfabric statistics.  
A B C 

N=2329 
S1=0.528 
V1=55° 

Figure 3.35. An image of horizontal thin section No. 043-1(H): A – scanned thin section 
image; B – microfabric distribution with grid resolution R = 2.6 mm calculated according to 
eigenvalue method; C – summary microfabric orientation across the thin section calculated 
according to eigenvector method. The top of the image is to the N. Note the rather chaotic, 
domain-like preferred orientation with small proportion of strong fabric (indicated by the 

dark colour of summary orientation lines). The low S1 value for summary orientation 
indicates very weak fabric. Used symbols are explained in Tables 1 and 2. 

3.35. attēls. Horizontālā plānslīpējuma Nr. 043-1(H) attēls: A – skenēts plānslīpējuma attēls; 
B – mikrolinearitātes sadalījums pie režăa izšėirtspējas R = 2.6 mm aprēėināts izmantojot 
eigenvektoru paĦēmienu; C – mikrolinearitātes summārā orientācijā visam plānslīpējuma 

laukumam, aprēėināta izmantojot eigenvektoru paĦēmienu. Visos attēlos uz augšu ir ziemeĜi. 
Ievērojiet visai haotisko domēnu tipa mikrolinearitātes sadalījumu B attēlā ar nelielu labi 
izteiktas linearitātes (tumšas summārās orientācijas līnijas) īpatsvaru. Zemā S1 vērtība C 
attēlā norāda uz Ĝoti vāji izteiktu linearitāti. Izmantotie apzīmējumi ir paskaidroti 1. un 2. 

tabulās. 
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A B 

Figure 3.36. Two contrasting modes of microfabric distribution around gravel grain: 
A – circular microfabric arrangement around a gravel grain; B – microfabric gently 

bending around a gravel grain. Both thin sections are vertical, facing in the E direction 
and prepared from one sample. In the first case (A) gravel grain presumably has 

rotated, forming circular structure; in the second case (B) stabile gravel grain position 
is suggested. Note that the microfabric distribution is calculated with minimum 

number of measurements at the single grid point set to 10 that is too little for reliable 
estimation of preferred orientation strength. Used symbols are explained in Tables 1 

and 2. 

3.36. attēls. Attēlā parādīti divi atšėirīgi mikrolinearitātes apliekšanās veidi ap grants 
graudu: (A) – mikrolinearitātes apĜveida sakārtojums ap grants graudu; (B) – 

mikrolinearitāte apliecas ap grants graudu. Abi plānslīpējmi ir vertikāli un vērstu uz 
austrumiem. Pirmajā gadījumā (A) grants grauds, iespējams, ir rotējies veidojot 

apĜveida struktūru, savukārt otrajā gadījumā (B), domājams, grants grauds atradās 
stabilā stāvoklī. Mikrolinearitātes orientācija ir aprēėināta katrā diagrammā iekĜaujot 

ne mazāk kā 10 mērījumus, kas nav pietiekams liels skaits, lai ticami novērtētu 
linearitātes izteiktību. Izmantotie apzīmējumi ir paskaidroti 1. un 2. tabulās.

A single horizontal thin section is prepared form sample No. 044. The summary 
microfabric is extremely weak (S1 = 0.532; V1 = 54°), however in grid resolution R = 2.6 
mm locally microfabric strength S1 is above 0.7 and V1 direction is around 60°. A well 
expressed domain like pattern is observed. 

In the horizontal section of sample No. 043 weak preferred orientations is 
observed unfortunately only the N direction for the section is known. Well pronounced 
linear zone of coarse sand grains is present, that can be interpreted as marking direction of 
ice local movement or deformation during the till deposition (Fig. 3.35). The average 
microfabric strength S1 is only slightly above 0.5, indicating very weak fabric forming 
around 30° with the orientation of sand stringer observed in the thin section. The fabric 
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strength is low in individual domains as well – in grid resolution R =2.6 mm, the S1 value 
for individual diagrams in no case reaches 0.7 and typically is below 0.6 (Appendix 9). 

The microfabric in the horizontal sections of both samples seems to coincide, 
being extremely weak and trending somewhere in the NE-SW direction. 

Subhorizontal, moderately strong (S1 = 0.613 and 0.557) microfabric is observed 
in both vertical sections of sample No. 043. However, there is remarkable difference 
between microfabric arrangements around a gravel grain in both sections (Fig. 3.36): in 
one case gravel grain rotation is inferred; in the other – sediment compaction or gravel 
grain steady-state position in sheared till are the likely mechanisms of microfabric 
distribution formation. Both thin sections are facing to the E and the observation indicates 
that both rotation and steady-state position – sliding – of gravel grains in tills can occur 
simultaneously.  

A microfabric distribution in fine resolution that resembles a water escape 
structure or microscale thrust in thin section No. 043-2 is observed (Fig. 3.37). Such 
structure can be produced as a result of minor till deformation and is compatible with 
observed microfabric distribution around gravel grains (Fig. 3.36). 
A B C 

Figure 3.37. A microfabric distribution that resembles water escape structure or minor 
thrust in thin section No. 043-2 is evident in case of fine resolution of microfabric 

visualisation (A), barely identifiable in large resolution (B), and not seen in the scanned 
thin section image. Note that the microfabric distribution in image A is calculated with 
minimum number of measurements at the single grid point set to 10 that is too little for 

reliable estimation of preferred orientation strength. Used symbols are explained in Tables 
1 and 2. 

3.37. attēls. Plānslīpējumā Nr. 043-2 novērotais mikrolinearitātes sadalījums, kas līdzinās 
atūdeĦošanās struktūrai vai mikromēroga uzbīdījumam ir labi redzams gadījumā ar augstu 

mikrolineartiātes vizualizācijas izšėirtspēju (A), bet grūti pamanāms gadījumā ar zemu 
izšėirtspēju (B), un nav redzams skenētā plānslīpējuma attēlā (C). Mikrolinearitātes 

orientācija A attēlā ir aprēėināta katrā diagrammā iekĜaujot ne mazāk kā 10 mērījumus, kas 
nav pietiekams liels skaits, lai ticami novērtētu linearitātes izteiktību. Izmantotie 

apzīmējumi ir paskaidroti 1. un 2. tabulās. 
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3.4.3. Upper till, samples Nos. 072, 076b and 071 

Three samples (Nos. 072, 076b, 071) are collected at the -17,600 m mark of 
coastal profile, near the place where macrofabric measurements are made as well (Table 
3.3). All the samples are collected from the middle part of the upper till. Samples Nos. 072 
and 076b are collected 1.5 m bellow the top of this unit, and sample No. 071 – 2 m bellow 
its top. Few sand stringers and platy till structure noted observed at the sampling spot. 

 The sample No. 072 consists of massive diamicton with fine sand and silt stringer 
crossing it. Two vertical thin sections cutting the sand stringer and one horizontal – not 
cutting the stringer – are prepared form the sample (Appendix 9). 

A  B 

Figure 3.38. The sand stringer morphology and microfabric distribution in vertical thin 
section No. 072-1: A – scanned thin section image; B – thin section sketch and microfabric 

distribution. In image B the blue colour represents the sand stringer; other symbols are 
explained in Tables 1 and 2. The thin section is facing approximately to S. Note that the 

microfabric strength is indicative as the minimum number of measurement in each diagram 
is only 10. Mixing of sands and diamicton along their upper contact is observable. The 
gravel grain in the bottom-centre of the image introduces only minor perturbations in 

microfabric distribution, and it is likely associated with simple shear and steady state (as 
opposite to rotation) gravel grain position. Alternatively the microfabric distribution 

around the gravel grain can be interpreted as indicative of the lodgement.  

3.38. attēls. Smilts josliĦas morfoloăija un mikrolinearitātes sadalījumus vertikālajā
plānslīpējmuā Nr. 072-1: A – plānslīpējuma skenēts attēls; B – plānslīpējuma skice un 
mikrolinearitātes sadalījums. B attēlā ar zilu krāsu ir apzīmēta smilts josliĦa, pārējie 

apzīmējumi ir paskaidroti tabulās 1. un 2. Mikrolinearitātes aprēėinā minimālais mērījumu 
skaits vienā diagrammā ir 10, kas ir par mazu, lai iegūtu statistiski ticamus rezultātus. 
Attēlā redzama smilts un diamiktona mehāniska sajaukšanās gar abu materiālu augšējo 

kontaktu. Mikrolinearitātes sadalījums ap grants graudu attēla vidējā daĜā var tikt 
interpretēts kā vienkāršas bīdes rezultāts, bez grants grauda rotācijas vai arī kā veidojies 

sablīvējuma (lodgement) procesa rezultātā. Mikrolinearitātes orientācija ir aprēėināta katrā
diagrammā iekĜaujot ne mazāk kā 10 mērījumus, kas nav pietiekams liels skaits, lai ticami 

novērtētu linearitātes izteiktību. 
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The stringer has clear deformation marks (Saks et al., 2007) – the upper part of it 
is mixed with glacial diamicton – the bottom boundary is undulated, but material mixing is 
limited (Fig. 3.38). A surface of till plate is observed some 2 cm bellow the sand stringer. 

In vertical section No. 072-1 almost horizontal position of sand stringer and till 
plate is observed, in section No. 072-2 both are in inclined position. It is interpreted that 
the dip direction for both structures is to W.  
 A B 

 C D 

Figure 3.39. The microfabric distribution across different scales (images A, B, C) in thin 
section No. 072-H (D – scanned thin section image). Strong and consistent microfabric 
distribution is demonstrated. The thin section is facing down and north is approximately 
to the lower left corner of the image. Note that the microfabric distribution in image A is 
calculated with minimum number of measurements at the single grid point set to 10 that 

is too little for reliable estimation of preferred orientation strength. Used symbols are 
explained in Tables 1 and 2. 

3.39. attēls. Mikrolineraritātes sadalījums dažādos mērogos (A, B, C) plānslīpējumā Nr. 
072-H (D – skenēts plānslīpējuma attēls). Plānslīpējumā ir novērota labi izteikta un 

viendabīgi sadalīta mikrolinearitāte. Plānslīpējums ir vērsts uz leju, un ziemeĜu virziens ir 
aptuveni uz kreiso apakšējo attēla stūri. Mikrolinearitātes orientācija A attēlā ir aprēėināta 
katrā diagrammā iekĜaujot ne mazāk kā 10 mērījumus, kas nav pietiekams liels skaits, lai 

ticami novērtētu linearitātes izteiktību. Izmantotie apzīmējumi ir paskaidroti 1. un 2. 
tabulās. 
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A B 
Figure 3.40 Scanned image of the thin 

section No. 076b-1 and summary 
preferred orientation of the 315 

manually measured larges sand grains 
in diamicton presented as a simple rose 

diagram (B). 

3.40. attēls. Plānslīpējums Nr. 076b-1 
skanēts attēls (A) un vienkāršas rozes 
diagrammas formā parādīta summārā
manuāli uzmērītu 315 lielāko smilts 

graudu orientācija diamiktonā. 

In vertical section No. 072-1 a gravel grain with surrounding microfabric 
distribution that can be interpreted as result of simple shear and gravel grain behaviour 
according to March model – stabile state orientation – is observed (Fig. 3.38). 
Alternatively the microfabric distribution can be considered as indicative of lodgement as 
indicated by small microfabric “pinch” at the bottom – left corner of gravel grain). In first 
case dextral (top to the right) sense of shear is more likely, in the second – sinistral (top to 
the left) sense of shear is seen. 

The rotation structures in thin section No. 072-1 sandy lamina indicate dextral 
(top to the right) shear sense. Given the overall microfabric dip direction to the left the 
dextral (top to the right) sense of shear is more likely. Microfabric overall dip angle in thin 
section No. 072-2 is slightly steeper (50º) than the dip angle of sand stringer in the same 
section.  

The preferred microfabric orientation in the horizontal section is roughly 
perpendicular to the dip direction of the sand stringer and till plate. It is strong and uniform 
with no identifiable domain-like structure (Fig. 3.39). It is likely that the observed 
microfabric is a result of local small-scale folding within till unit as indicated by the 
steeply dipping sand stringer and till plate in the thin section No. 072-2. Extension, 
associated with folding could significantly contribute to the development of strong and 
uniform microfabric. 

The summary microfabric strength (S1) in all three thin sections prepared from 
sample No. 072 is rather high – in all cases above 0.6. 

Sample No. 076b include part of the coarse-grained sand lamina at the top, and 
diamicton – at the bottom (Fig. 3.40). Contact between sand and diamicton materials has a 
jig-saw form with preferred microfabric orientation in diamicton corresponding to the 
orientation of cutting lines, suggesting brittle sediment deformation due to extension or 
development of Riedel shears in consolidated till body that is reactivated by shearing. In 
both vertical sections (Nos. 076b and 076b-2) steeply dipping microfabric orientation is 
observed. In the horizontal section (No. 076b-H) strong unidirectional fabric is observed 
trending in NNE-SSW direction (Kalvāns, 2004). This is similar to the observation at the 
sample No. 072 and contrasting to the macrofabric orientation. Unfortunately only 
summary orientation of the largest sand grains with very limited details of the spatial 
distribution for this sample is available from Kalvāns (2004).  
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A B 

Figure 3.41 Microfabric distribution (A) and scanned thin section No. 071a-1 image (B). 
The microfabric is much weaker than in other orthogonal thin sections prepared from the 

same sample. Used symbols are explained in Tables 1 and 2. 

3.41. attēls. Mikrolinearitātes sadalījums plānslīpējumā Nr. 071a-1 (A) un skenēts 
plānslīpējuma attēls (B). Mikrolinearitāte ir daudz vājāk izteikta, salīdzinot ar citiem 

ortogonālajiem plānslīpējumiem, kas izgatavoti no tā paša parauga. Izmantotie apzīmējumi 
ir paskaidroti 1. un 2. tabulās. 

Two sets of three orthogonal thin sections are prepared from sample Nos. 071: 
071a and 071b. Many of the smallest gravel grains in thin sections prepared from sample 
No. 071 have silt coatings and silt pebbles are present as well. Structures that are suggested 
to be calcite concretions formed after till deposition (Kalvāns, 2004) are observed. 

The parallel vertical thin sections Nos. 071a-2 and 071b-1 as well as horizontal 
sections Nos. 071a-H and 071b-H have strong and uniform microfabric: the summary 
orientation S1 values respectively are above 0.6 (Appendix 9). Even in case of the finest 
grid resolution (R = 1.3 mm) most of the diagrams indicate similar and strong preferred 
orientation.  

In contrast the vertical sections Nos. 071a-1 and 071b-2 has poorly developed 
microfabric: S1 values respectively 0.533 and 0.559. Rather well developed domain-like 
distribution and fold-like bending of preferred microfabric orientation are observed (Fig. 
3.41), but even in the grid resolution R = 1.3 mm fabric strength S1 in no case reaches 0.7 
(Appendix 9).  

In summary one vertical (Nos. 071a-2 and 071b-1) and horizontal (Nos. 071a-H 
and 071b-H) sections demonstrate strong and uniform microfabric preferred orientation 
while the second vertical section in both sets have weak and domain-like preferred 
microfabric orientation. The observed microfabric distribution in sections prepared from 
sample No. 071 suggest strong uni-directional 3D microfabric dipping to the NWW with 
one vertical section roughly parallel and other perpendicular to this direction. 

The till macrofabric measured near the sampling spot is strong as well (S1 = 0.742 
and 0.618) but preferred orientation is in E-W direction rather than in N-S as in thin 
sections. Thus transverse microfabric – macrofabric orientation is suggested. 
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A B 

C D 

Figure 3.42 The preferred microfabric distribution (A and C) and respective scanned 
images of thin sections Nos. 071a-2 and 071a-3 (B and D). The asymmetric 

microfabric distribution relative to the longest axis of the largest gravel grains and 
discordances in microfabric distribution in both thin sections can be interpreted as 

indication of gravel grain lodgement, rather than simple shear. Note that the 
microfabric distribution is calculated with minimum number of measurements at the 

single grid point set to 10. That is too litle for reliable estimation of preferred 
orientation strength. Used symbols are explained in Tables 1 and 2. 

3.42. attēls. Mikrolinearitātes sadalījums (A un C) un attiecīgi plānslīpējumu Nr. 
071a-3 un 071a-2 skenēti attēli (B un C). Asimetriskais mikrolinearitātes orientācija 

attiecībā pret lielāko grants graudu garāko asi un diskordances mikrolinearitātes 
sadalījumā, iespējams, liecina par grants graudu izgulsnēšanu sablīvējuma ceĜā, nevis, 
piemēram, par morēnas vienkāršas bīdes deformāciju. Mikrolinearitātes orientācija ir 
aprēėināta katrā diagrammā iekĜaujot ne mazāk kā 10 mērījumus, kas nav pietiekams 

liels skaits, lai ticami novērtētu linearitātes izteiktību. Izmantotie apzīmējumi ir 
paskaidroti 1. un 2. tabulās. 
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A 

B 

Figure 3.43. Microfabric distribution (A) around a gravel grain in 
thin section No. 071b-1 (B). The microfabric distribution is 

seemingly unaffected by the presence of gravel grain. Note that the 
microfabric distribution is calculated with minimum number of 

measurements at the single grid point set to 10. That is too litle for 
reliable estimation of preferred orientation strength. Used symbols 

are explained in Tables 1 and 2. 

3.43. attēls. Mikrolinearitātes sadalījums (A) ap grants graudu 
plānslīpējumā Nr. 071b-1 (B). Grants grauds, šėietami, nekādā

veidā neietekmē minkorlinearitātes orientācijas virzienu. 
Mikrolinearitātes orientācija ir aprēėināta katrā diagrammā iekĜaujot 

ne mazāk kā 10 mērījumus, kas nav pietiekams liels skaits, lai 
ticami novērtētu linearitātes izteiktību. Izmantotie apzīmējumi ir 

paskaidroti 1. un 2. tabulās. 

A B 

Figure 3.44. Strongly asymmetric microfabric distribution (A) around a gravel grain in thin 
section No. 071b-1 (B). Note that the microfabric distribution is calculated with minimum 

number of measurements at the single grid point set to 10. That is too little for reliable 
estimation of preferred orientation strength. Used symbols are explained in Tables 1 and 2. 

3.44. attēls. Izteikti asimetrisks mikrolinearitātes sadalījums (A) ap grants graudu 
plānslīpējumā Nr. 071b-1 (B). Mikrolinearitātes orientācija ir aprēėināta katrā diagrammā
iekĜaujot ne mazāk kā 10 mērījumus, kas nav pietiekams liels skaits, lai ticami novērtētu 

linearitātes izteiktību. Izmantotie apzīmējumi ir paskaidroti 1. un 2. tabulās. 

In sections with the strongest microfabric an asymmetric distribution of 
microfabric can be observed around larges gravel grains.  In section Nos. 071a-1 and 071a-
2 structures that according to Thomason and Iverson (2006) can be interpreted as 
indicative of gravel grain lodgement rather than simple shear of sediments are observed 
(Fig. 3.42). In section No. 071b-1 one gravel grain seems no to affect the microfabric 
distribution at all (Fig. 3.43); around another gravel grain strongly asymmetric distribution 
across vertical axis is observed (Fig. 3.44).   
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3.4.4. Upper till, samples Nos. 091 and 092 

Samples Nos. 091 and 092 are collected from banded part of the upper till at the 
Sensala site, near the profile mark -17,685 m, 1 and 1.3 m respectively below the till 
surface. The banded structure is formed by diamicton bands and bands of silt-rich sand 
often with flowage structure. Both sandy-silty and diamicton bands are visible in the 
sample No. 092; in the sample No. 091 only diamicton is exposed. 

Despite the different materials presented, the microfabric distributions in both 
sandy bands and diamicton bands are similar, though the microfabric in the sandy band 
seems to be more consistent than in the diamicton band. In the horizontal sections in both 
diamicton band (section No. 091-H) and sandy band (section 092-H) the summary 
microfabric are weak – S1 around 0.53 with dominant orientation roughly in N – S 
direction (Appendix 9). The vertical sections have only slightly higher microfabric strength 
with S1 in the range from 0.57 to 0.59 (Appendix 9). In vertical sections trending in N-S 
direction (091-2 and 092-1) subhorizontal orientation is observed; in sections trending in 
approximately E-W direction (Nos. 091-1 and 092-2) steeply dipping preferred orientation 
is observed. In 3D such an apparent microfabric distribution can be reconstructed as 
dipping towards the W and attributed, for example, to limb of fold-like structure with N-S 
axial direction. 

The microfabric in the vertical section of sample No. 092 locally as well as in 
general follows the orientation of the boundary between sandy-silty band and diamicton 
band.  

A sand intrusion in diamicton band is observed in sections Nos. 092-1 and 092-2 
and the microfabric orientation locally follows the orientation of intrusions.  

In section No. 092-2 comparing to section No. 092-1 the microfabric orientation 
in sandy part is more consistent, stronger and arranged in larger domains (Fig. 3.45), and a 
fold-like distribution is observed (Fig. 3.45). In section 092-1, in grid resolution R = 0.6 
mm, small scale fold-like microfabric distribution is observed. Two sub vertical fabric 
zones, possibly reflecting brittle deformation, are observed in the diamicton part. 

Only in the sample No. 091-H a gravel grain of sufficient size to study the 
microfabric distribution around it is present (Fig. 3.46). Approximately in the direction of 
summary microfabric orientation from the gravel grain a domain of well expressed 
consistent lineation followed by a domain of fold-like microfabric distribution is observed. 
It can be speculated that the structure is a perturbation trail introduced in the sediments by 
the presence of rigid particle. 

A keel-shaped band or domain of uniform preferred microfabric orientation is 
observed in the section No. 091-2 (Fig. 3.47). This represents a case of unusually large 
microfabric domains observed in other sections as well. 

3.4.5. Waterlain till – samples Nos. 042 and 017 

The sample No. 017 is collected from the base of the water-lain till above its 
contact with fine sands near -17,940 m mark of the coastal profile. The single thin section 
(No. 017-1) prepared from this sample deserves special honour as it was the first thin 
section prepared in the scope of this study (Kalvāns, 2004) and have contributed in 
developing great deal of ideas in the base of this thesis. Fine lamination, matrix-rich 
diamicton pebbles and diamicton coatings around some of the gravel grains are observed in 
the section (Fig. 3.48). Subhorizontal (dip angle 14°) and rather strong (S1 = 0.601) 
summary orientation of microfabric is observed in section No. 017-1 (Table 4.12). 
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A B 

Figure 3.47. A keel-shaped microfabric domain with consistent orientation stands out on 
the background of rather chaotic preferred orientation in the section No. 091-2: A – 
microfabric distribution, B – thin section image acquired in cross-polarised light. 

Note that the microfabric distribution is calculated with minimum number of 
measurements at the single grid point set to 10 that is too small for reliable estimation of 

preferred orientation strength. Used symbols are explained in Tables 1 and 2. 

3.47. attēls. ĖīĜa formas domēns plānslīpējumā Nr. 091-2 ar labi izteiktu, vienmērīgu 
mikrolienaritātes sadalījumu izceĜas uz visai haotiska mikrolinearitātes sadalījuma fona: A 

– mikrolinearitātes sadalījums; B – plānslīpējuma attēls krustiski polarizētā gaisām. 
Mikrolinearitātes orientācija ir aprēėināta katrā diagrammā iekĜaujot ne mazāk kā 10 
mērījumus, kas nav pietiekams liels skaits, lai ticami novērtētu linearitātes izteiktību. 

Izmantotie apzīmējumi ir paskaidroti 1. un 2. tabulās. 

The sample No. 042 is collected from uniform section of the waterlain till near the 
-17,550 m mark of the coastal profile. The orientation information of the individual 
sections is not retained. As the sample is taken form glaciotectonically disturbed sediments 
it is expected that the initial microfabric distribution has been reshaped to some extent. 

The thin sections Nos. 042-1 and 042-3 have rather strong (S1 = 0.571 and 0.603 
respectively) and relatively uniformly distributed microfabric that is usually characteristic 
for vertical sections. However in both cases the summary dip angle is quite steep (35º and 
17º respectively), probably indicating the glaciotectonic tilting of sediment patch. These 
values contrast to weaker microfabric in the section No. 042-2 (S1 = 0.533) that likely 
represent subhorizontal orientation.  

Markedly for thin section Nos. 042-1 and 042-3 as well as No. 017-1 down to 
resolution of R = 1.3 mm all diagrams with strongest microfabric have eigenvalue direction 
close to the mean value. That is not the case for thin sectionsection No. 042-2, where 
proportion of strong microfabric domains is significantly smaller than in other vertical 
sections and more chaotic orientation is observed (Fig. 3.49). 

In the horizontal section No. 042-2 in sufficiently large generalisation level (R ≥
5.2 mm) in all grid points V1 orientation is similar however the S1 value is low (<0.6). This 
contrast to stronger microfabric in vertical sections where the S1 value in grid resolution R 
= 5.2 mm remains relatively high (around 0.6).  
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A B C 

Figure 3.48. The vertical thin section No. 017-1 of the waterlain till: A – scanned thin 
section image; B, C – microfabric distribution. Faint lamination, matrix-rich diamicton 

pebbles and gravel grains with diamicton coatings are observed in the thin section. 
Microfabric bands dipping from the left top corner to the right of the image can be 

observed. This probably is a result of post-depositional brittle deformation. The 
microfabric is gently bending around tops of large gravel grains. This can be interpreted as 

a result of sediment compaction or, less likely, gravel grain rotation. Note that the 
microfabric distribution in image B is calculated with minimum number of measurements 

at the single grid point set to 10 that is too small for reliable estimation of preferred 
orientation strength. Used symbols are explained in Tables 1 and 2. 

3.48. attēls. No ūdenī izgulsnētās morēnas parauga izgatavotais vertikālais plānslīpējums 
Nr. 017-1: A – skenēts plānslīpējuma attēls; B, C – mikrolinearitātes sadalījums. 

Plānslīpējumā ir novērojams neskaidrs slāĦojums, ar matricu bagāta diamiktona olīši un 
grants graudi ar diamiktona apmalēm. Attēlā redzamas mikrolinearitātes joslas, kas tiecas 
no augšējā kreisā stūra uz apakšējo labo attēla stūri. Tās, iespējams, ir veidojošās trauslas 
deformācijas rezultātā pēc nogulumu izgulsnēšanās. Mikrolinearitāte apliecas ap lielāko 

grants graudu augšējo malu. Tā var tikt interpretēta, kā nogulumu sablīvēšanās, vai. mazāk 
ticami, kā grants graudu rotācijas pazīme. Attēlā B mikrolinearitātes orientācija ir 

aprēėināta katrā diagrammā iekĜaujot ne mazāk kā 10 mērījumus, kas nav pietiekams liels 
skaits, lai ticami novērtētu linearitātes izteiktību. Izmantotie apzīmējumi ir paskaidroti 1. 

un 2. tabulās. 

In vertical thin sections No. 017-1, 042-1 and to a lesser extent in No. 042-3 in 
resolution R = 0.6 mm fine zones of lineation crossing the full thin section area can be 
traced (Fig. 3.48 and 3.49). It is suggested that these structures are the result of brittle 
deformation, that occurred after sedimentation due to sediment compaction or 
glaciotectonic deformation. 
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A F G 

B E H 

Figure 3.49. Comparison of microfabric distribution in three orthogonal thin sections 
prepared from the sample No. 042: A, F, G – scanned thin section images; B, E, H – 

microfabric distribution. Not the rather uniform and largely strong microfabric in the thin 
sections No. 042-1 and 042-3 compared to the thin section No. 042-2; the two first are 

likely representing the vertical orientation and the later one – horizontal. The steep 
microfabric dip in vertical sections probably is a result of the glaciotectonic tipping of the 

sediment patch. Used symbols are explained in Tables 1 and 2. 

3.49. attēls. Mikrolinearitātes salīdzinājums trijos ortogonālos plānslīpējumos, kas 
izgatavoti no parauga Nr. 042: A, F, G – skenēti plānslīpējumu attēli; B, E, H – 

mikrolinearitātes sadalījums. Salīdzinot ar plānslīpējumu Nr. 042-2, plānslīpējumos Nr. 
042-1 un 042-3 ir novērota vienmērīgi orientēta un labi izteikta mikrolinearitāte; 

Domājams, ka tas tas saistīts ar to, ka pirmais raksturo horizontālu griezumu, kamēr 
pēdējie divi – vertikālu. Stāvais mikrolinearitātes krituma leĦėis plānslīpējumos Nr. 042-1 

un 042-3 domājams atspoguĜo nogulumu ėermeĦa glaciotektonisku sašėiebšanu. 
Izmantotie apzīmējumi ir paskaidroti 1. un 2. tabulās. 

The waterlain origin of the sediments is supported by the microfabric distribution 
around a gravel grain at the thin sectthin section No. 017-1 (Fig. 3.48) as well as large 
number of fine-grained diamicton pebbles. The microfabric is symmetrically bending 
around a gravel grain suggesting material deposition on top of a bump created by buried 
gravel grain. Less likely explanation of such a microfabric distribution is gravel grain 
rotation in a process of the simple shear. 
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It can be concluded that waterlain till at the Sensala site is characterised by gently 
dipping microfabric in the vertical section. Perturbations in the microfabric around gravel 
grains are restricted to small area above them (thin section No. 017-1). No significant 
microfabric strength variation between sandy bottom part and diamicton part in thin 
section No. 017-1 is observed. This supports the assumption that the deposition in a water 
column is the main process involved in formation of these sediments as pervasive sediment 
deformation is likely to form different microfabric patterns in the materials of the different 
grain size. 
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4. Discussion and interpretation  

The relatively large number of analyzed samples al allow to draw some general 
conclusions about till microfabric as an important till characterization parameter, thus 
contribution to understanding of processes at the warm based active glacier bed. In this 
chapter first the object specific questions will be discussed followed by discussion about 
till microfabric in more general terms. At the concluding part some methodological 
questions will be considered as well. 

4.1. Microfabric in a distinct shear zone, Ziemupe case 

At Ziemupe site microfabric distribution was studied in the predominantly sandy 
shear zone and two till units above and below it. In till units contrasting macrofabric 
orientation was measured: NNE to SSW orientation in the upper till, and NEE – SWW 
orientation in the lower till. Although the microfabric strength in the horizontal sections is 
low the same trend was clearly identifiable: macrofabric and microfabric orientation is 
similar.  

In vertical sections a very strong and uniform microfabric orientation of the sandy 
laminas from shear zone must be noted: in several thin sections the microfabric coincided 
within a single degree. In contrast the microfabric in bands of poorly sorted material is not 
as strong and less homogeneous. This indicates homogenous nature of the microfabric in 
the shear zones composed from sediments with narrow grain size distribution in opposite 
to low fabric strength in heterogeneous – diamicton – sediments. 

It can be expected that in sands subject to simple shear in case of low effective 
pressure sliding of similar size grains along each other will be the dominant form of grain 
interaction. In case of diamicton the same kind of interaction between similar size grains 
will take place, but the grains considerably larger than the mean size will disturb the 
deformation field and displacement directions around them. This will result in lower 
microfabric strength in diamicton compared to the sands and this is supported by the 
observations. 

In mathematical modelling experiments it is demonstrated that the formation and 
collapse of grain bridges of force chains will supports most of the stress in the shear zone 
(Mair, Hazzard, 2007). The same researchers demonstrated (ibid) that well sorted materials 
tend to have simple networks of strain chains (grain bridges) dipping around 50° in 
direction of the shear. Meanwhile the materials of power law distribution tend to have 
branched stress networks with significant proportion of weaker than average stress chains 
being oriented oblique or at large angles towards the shear direction. Assuming that the 
development of force chains is one of the mechanisms denoting microfabric development, 
described experimental results correspond well to the observations. This explains the 
relatively weaker microfabric of diamicton with characteristic power law grain size 
distribution (e.g. Hooke, Iverson, 1995; Benn, 2002) and stronger microfabric of well 
sorted sands.  

It must be noted that the results present here and elsewhere (e.g. Thomason, 
Iverson, 2006, 2009) demonstrate that in tills rather strong microfabric can be observed as 
well. Thus different pattern of fabric strength development is expected for materials with 
different grain size composition undergoing similar deformation. 
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4.2. Origin of diamicton spherules at Plašumi gully site  

A till at the Plašumi gully site with peculiar network of long vertical, short 
horizontal and spherical joint structure was studied in thin sections. Examination did not 
reveal any significant correlation between microfabric and spherical joint systems. 
Therefore is suggested that the odd spherical structure of the till is due to post-
sedimentation processes, for example, repeated desiccation or frost action, rather than the 
genesis of till unit itself. 

4.3. The origin of sandy diamicton at Strante site  

The sandy diamicton at Strante site initially was chosen for microscale studies due 
to its unclear genesis, both glacioaquatic and subglacial origin were suggested. The 
repeated fieldwork sessions, mostly due to the presence of rounded soft sediment (mostly 
fine sand) clasts with preserved, slightly deformed primary sedimentary structure 
concentrated in certain levels it was concluded that present sediment are a local till. Similar 
inclusions are often found in basal tills (Evans et al., 2006) and are interpreted as being 
incorporated in till in a frozen state.  

An odd microfabric distribution is observed in the thin sections: rather weak 
preferred orientation in the horizontal sections and distinct bimodal distribution in the 
vertical sections with primary (dominant) subhorizontal and secondary subvertical modes. 
In three dimensions this can be imagined as a single subvertical mode rising above 
dominant orientation laying in horizontal plane with weak maxima roughly in E-W 
direction. 

Several mechanism of observed preferred microfabric formation is considered: (1) 
rotation of oblate (disk-shape) sand grains in shear zone according to the Jeffery’s model 
(Jeffery, 1922) around shortest axis positioned in horizontal plane normal to shear 
direction, (2) raining down of sand grains in a water column and “pricking” in soft 
substrate (like described by Carr, 1999, 2001) or (3) vertical loose sediment compaction – 
pure shear. The first case implies subglacial origin; the second – glacioaquatic origin and 
the third can be attributed both for subglacial sediments and glacioaquatic sediments 

In a case of shearing origin, if Jeffery’s model is assumed, oblate particles are 
expected to rotate with shortest axis in the plane of shearing and perpendicular to the shear 
direction and rod-like particles - are expected to roll, with longest axis laying in the plane 
of shearing, normal to the shear direction (forming b-fabric). If such position of oblate and 
rod-like grains are cut by randomly oriented vertical thin section plane that does not 
coincide with shear direction indeed two orthogonal modes of apparent microfabric 
orientation should be observed. The same should be the case for horizontal sections as 
well, with one mode representing rod-like particles and second – the oblate particles. But 
in horizontal thin sections monomodal, weak fabric is observed. Additional the evaluation 
of the grain shape indicates that a noticeable proportion of the oblate grains are lying in the 
horizontal plane as there are more apparently elongated grains in the vertical than in the 
horizontal sections. Thus observations do not confirm sand size particle behaviour 
according to Jeffery’s model. 

There is observed slight increase of subvertical mode strength for the largest grain 
sizes as should be expected in case of “pricking” (dropstones) mechanism. However, Carr 
(1999, 2001) examining glaciomarine sediments found only one subvertical not two 
orthogonal microfabric modes. The “pricking” (dropstones) mechanism is in line with 
weakly developed fabric in horizontal sections that could be shaped by dominant water or 
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wave movement direction. But formation of rounded inclusions of soft sediment clasts in 
such environment is unlikely.  

The vertical compaction of loose sediments can result in formation of two 
orthogonal microfabric modes if sediments initially have random fabric orientation: all 
grains except those with longest axis parallel to the direction of compaction will rotated to 
the plane normal to the compaction direction. However elongated grains will not reach this 
plane unless very large shortening rate is achieved. If the initial fabric will have any 
subvertical or subhorizontal mode, it will be enhanced during the compaction. It is likely 
that the bimodal fabric was enhanced due to sediment compaction, but was formed as a 
result of other processes.  

These sediments likely accumulated in areas of ground subsidence between 
diapirs (see Saks et al., accepted for publication, for discussion). New material was 
constantly added to the till accumulation area resulting in effective isolation of already 
present sediments from the glacial shear stress. The shear deformation likely resulted in 
development of subhorizontal mode, and the pore water upward or downward expulsion in 
the latter stage could produce the subvertical microfabric mode. The diamicton, likely, 
were gradually deposited as tectonic slices (as summarised by Evans at al., 2006), and the 
compaction occurred gradually, rather than simultaneously for the full sediment pile of 
more than 6 m thickness. Thus it can be suggested that the material in the actively 
deformed layer was in viscous, flowing state effectively isolating the glacial shear stress 
from entering the deeper horizons of recently accumulated till where gradual compaction 
took place. However, this mechanism does not correspond to observations either, for 
examples, there is not observed any zones with stronger vertical mode, corresponding to 
possible pathway of more intense pore water expulsion. 

4.4. The microfabric strength and till fabric across different scales 

Thomason and Iverson (2006) in ring-shear experiments found that steady-state 
fabric strength of S1 around 0.71 to 0.74 after shear strains of 7–39 are established in some 
tills.  

As demonstrated in the figures 4.1, 4.2, 4.3 and 4.4, the high fabric strength 
values S1>0.7 are approached only rarely. Even in the sandy shear zone below the upper 
till at Ziemupe site in only one case S1 is above 0.7, although relatively large shear strain 
are thought to be accumulated there. It is possible that the measurement of all small grains 
in contrast to manual selection of larges grains as in most previous studies results in the 
lower summary fabric strength and thus the results need to be compared with caution. 

 Usually fabric strength in horizontal sections is lover than in vertical ones. It is 
likely due to relatively large proportion of the tabular grains as well as nature of the till 
emplacement processes. Tabular grains are expected to be aligned with longest axis close 
to horizontal plane, contributing significantly to the microfabric strength in the vertical 
sections and obscuring the microfabric signal associated with the rod-like grains in 
horizontal ones. Both shearing and compaction – the two dominant factors affecting grain 
orientation in tills – are expected to shift the longest axis of any grain towards the 
horizontal plane, thus strengthening the apparent subhorizontal microfabric observable in 
vertical sections. Additionally the compaction does not contribute to development of any 
preferred grain orientation in horizontal section and in numerous studies it is demonstrated 
that the shearing can produce transverse as well as parallel fabric. So both processes – the 
compaction and the shearing – can contribute to development of weak microfabric in 
horizontal sections and strong, subhorizontal fabric in vertical ones. The third major 
process affecting microfabric orientation in tills – plough associated with lodgement of the 
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large clasts – likely could produce more random or domain-like microfabric distribution in 
both horizontal and vertical sections. 
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Figure 4.1 Summary microfabric from horizontal (A) and vertical (B) thin sections from 
the Ziemupe site. 

4.1. attēls. Dominējošā summārā mikrolinearitātes orientācija paraugos, kas ievākti 
Ziemupes atsegumā, horizontālajos (A) un vertikālajos (B) plānslīpējumos. 
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Figure 4.2 Preferred summary microfabric orientation and fabric strength in the horizontal 
(A) and vertical (b) thin section of the upper till at the Sensala site. 

4.2. attēls. Dominējošā summārā mikrolinearitātes orientācija Sensalas atseguma augšējās 
morēnas horizontālajos (A) un vertikālajos (B) plānslīpējumos. 
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Figure 4.3 Summary microfabrics from horizontal (A) and vertical (B) thin sections from 
the upper till at the Plašumi gully site. 

4.3. attēls. Dominējošā summārā mikrolinearitātes orientācija paraugos, kas ievākti no 
augšējās morēnas pie Plašumu gravas, horizontālajos (A) un vertikālajos (B) 

plānslīpējumos. 
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Figure 4.4 Summary microfabric from horizontal (A) and vertical (B) thin sections from 
the sandy diamictone at the Strante site. 

4.4. attēls. Dominējošā summārā mikrolinearitātes orientācija paraugos, kas ievākti no 
smilšainā diamiktona Strantes atsegumā, horizontālajos (A) un vertikālajos (B) 

plānslīpējumos. 
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Analysing the results from Ziemupe site (see Appendix 4) it was found that in 
almost all cases the microfabric is relatively stronger if data are collected from smaller area 
of the thin section. When examining the microfabric spatial distribution a domain-like 
structure is apparent. If data from several orientation domains are collected in a single data 
set inevitably the summary preferred orientation strength will diminish. Usually the 
preferred orientation in individual diagrams with S1>0.6 in case of R = 1.3 mm are spread 
across 10º to 25º wider sector than in case of R = 2.6 mm, in the samples from sandy band 
of the shear zone.  

Rather large variations of the microfabric strength are observed in the samples 
from the upper till at the Sensala site. The microfabric strength in horizontal sections is 
clearly divided in two groups (Fig. 4.1): (1) with relatively strong fabric (S1>0.6), and (2) 
with weak fabric (S1<0.55). No such microfabric strength modality is observed in vertical 
sections. The samples of similar fabric strength are collected from nearby locations. 
Samples Nos. 091 and 092, with weak fabric in horizontal sections, are collected from the 
relatively loose section of the upper till composed of bands of the diamicton and bands of 
the silt and sand with flowage structures at the -17,685 m of the coastal profile. The 
microfabric orientation there is similar to dominant macrofabric orientation in the upper 
till. In contrast samples Nos. 071, 072 and 076, having strong fabric in the horizontal 
sections, are collected from the well consolidate section of the till with few thin laminas of 
fine sands, at the -17,600 m of the coastal profile.  

The banded structure and internal deformation features imply that both till 
varieties were formed or at least shaped by shearing, but the mode of deformation likely 
was different. In first case (-17,685 m of the coastal profile) less confined, viscous-like 
deformation with large water content resulting in low consolidation level, and weak grain 
alignment is likely. In the second case (-17,600 m of the coastal profile) plastic 
deformation is suggested resulting in strong preferred sand grain orientation. The rather 
steep dip of sand lamina and microfabric observed in the thin sectthin section No. 072-2 
suggest that it is collected from some intertill deformation structure that formed after the 
emplacement of the sand lamina. Sediment extension – pure shear – not complicated by 
such process as lodgement or clast ploughing is a likely mechanism of the formation of the 
strong unidirectional microfabric there. The microfabric in the sample No. 071 is strong in 
four (out of six) thin sections and weak in the remaining two, additionally the dominant 
orientation is not subhorizontal. Such an apparent fabric distribution can correspond to 
strong unimodal real microfabric with one section orientated almost normal to the 
dominant fabric orientation.  

The dominantly in E – W direction trending macrofabric at the respective site 
(upper till -17,600 m of the coastal profile) is oriented oblique to the microfabric 
orientation. It contrasts to the most of the observations where microfabric and macrofabric 
dominant orientation coincides. The assumption that the microfabric orientation was 
formed by small scale internal deformation of the sediments that did not affect the general 
macrofabric orientation can support this observation. However the identification of 
deformation structure in this case is not possible.

The fabric strength indicator S1 is not applicable to the vertical thin section 
samples from Strante site as distinctly bimodal nature of the microfabric is observed. The 
exception is the sample No. 5n, where strongest microfabric is observed with S1 > 0.7. It 
comes from deformed fine sand sediments sediment. The local nature of deformation of the 
sampled sediments likely was extension instead of simple shear that is expected in tills. 
Thus, like in the case of the Sensala site, the strongest microfabric is connected with local, 
small scale deformation structures. 
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The comparison of phenomena observed in different scales often is not straight 
forward. This is true for the tills as well: till fabric is known to be a good indicator of 
former ice movement direction. However the three dimensional analysis of fabric elements 
is required to reconstruct the glacier movement direction correctly (Dreimanis, 1999). It is 
even more so in case of microfabric, as the local dominant orientation are formed by 
structures from few mm size up to the scale of the ice sheet itself. The time transgresive till 
accumulation and late stage development of localised shears in the acmuluated till body as 
outlined by Larsen et al. (2004, 2007) as well as perturbations in the microfabric 
distribution introduced by larger clasts are the obvious source of un-event microfabric 
distribution. 

Only rarely the source of perturbations in microfabric orientation – e.g. a gravel 
grain – can be seen in the thin section, but more often it cannot be determined. Observed 
microfabric preferred orientation and its local spatial distribution can equally represent the 
general properties of particular till unit as well as local variability introduced by some large 
clasts or other unknown factors. 

In scale of few milimeters there are higher fabric strength and higher variability of 
preferred orientation, compared to scale of few centimetres where low fabric strength and 
low variability of preferred orientation are observed.  

It is suggested that all till formation processes (lodgement and ploughing, shearing 
and deformation, melt-out, sedimentation in the water) impose certain microfabric 
distributions. Due to heterogeneous nature of till grain size distribution all the microfabric 
distributions formed as a result of different till formation processes should be rather 
heterogeneous in a small scale (small measurement areas) and becomes more or less 
homogenous in large scale (large considered areas). The nature of heterogeneities and the 
level of homogenisation will depend both from till grain size distribution and till formation 
processes involved. Such an approach to till microfabric can be termed “threshold of 
homogeneity”. It predicts that tills with higher contents of large grains will have higher 
threshold of homogeneity, e.g. homogenous microfabric distribution will be observed if 
data were collected from larger area of the thin section. 

Alternatively the microfabric distribution can be considered as being fractal-like. 
It is demonstrated that the grain size distribution for most tills are a fractal, with fractal 
dimension around 2.9 (Hooke, Iverson, 1995). Generally it is assumed that the till 
microfabric is formed by the interaction of different size grains, so it can be expected, that 
the microfabric distribution will have fractal-like (self similar at different scales) features 
as well. Such an approach to till microfabric can be termed “fractal like distribution”. It 
predicts that: (1) the same fabric distribution pattern should be observed across different 
scales, given that corresponding sized grains are measured for each scale; (2) the close 
correlation between grain size distribution and fabric strength across different scales 
should be observed 

It is intuitively understood that till microfabric is determined by the behaviour of 
the larger clasts such as gravel grains or pebbles or cobbles and small grains will be 
aligned according to the surface orientation of the large ones. Such an approach to till 
microfabric can be termed “clast surface representation”. It predicts that: (1) the summary 
micro fabric orientation will represent the macrofabric, just in a blurred form, and, (2) the 
microfabric spatial distribution around large clasts will bear some information on the 
interaction or movements of the clasts in the last stage of the till formation. This concept 
was suggested by Thomson and Iverson (2006) emphasising that the pattern of microfabric 
around rotating clast in pervasively sheared till would be different from microfabric pattern 
around lodged clast in lodgement till. 
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4.5. Microfabric distribution around gravel grains  

It is likely that clues about till formation can be fond by studying the microfabric 
distribution around gravel grains. Four idealised basic microfabric distribution patterns 
around the gravel grain in a section parallel to local displacement direction are given in the 
Table 4.1. In the Table 4.2 a gallery of the microfabric distribution around gravel grains 
from vertical thin sections included in this study are presented. 

Table 4.1. Idealised microfabric distribution patterns around a gravel grain in a vertical 
section parallel to the local displacement direction. 

4.1. tabula. Idealizēti mikrolinearitātes sadalījuma veidi ap grants graudu, lokālajam 
pārvietojuma virzienam paralēlā, vertikālā griezumā. 

Sketch Name Description 
Shearing 
without 
gravel grain 

Microfabric 
distribution without 
gravel grain 

Shearing Simple shear, 
steady-state gravel 
grain position (after 
Thomason, Iverson, 
2006) 

Rotation Simple shear, 
gravel grain 
rotation 

Lodgement Lodgement – a 
discordance in 
microfabric 
distribution (after 
Thomason, Iverson, 
2006) 

Compaction Vertical 
compression due to 
pore water 
expulsion or debris 
rich ice melting – 
melt-out 



- 
12

8 
-

T
ab

le
 4

.2
. G

al
le

ry
 o

f m
ic

ro
fa

br
ic

 d
is

tr
ib

ut
io

n 
ar

ound
 g

ra
ve

l g
ra

in
s 

of
 v

er
tic

al
 th

in
 s

ec
tio

ns
 in

cl
ud

ed
 in

 th
is

 s
tu

d
y.

 
4.

2.
 ta

bu
la

. M
ik

ro
lin

ea
ritā

te
s 

sa
da

līju
m

a 
ap

 g
ra

nt
s 

gr
au

du
 š

aj
ā 

pē
tī

ju
m
ā 

iz
m

an
to

ta
jo

s 
ve

rt
ikāl

aj
os

 p
lān

sl
īp
ēj

um
os

. 

T
hi

n 
se

ct
io

n 
id

en
tif

ic
at

io
n 

T
hi

n 
se

ct
io

n 
im

ag
e 

M
ic

ro
fa

br
ic

 d
is

tr
ib

ut
io

n 
In

te
rp

r
et

ed
 m

ic
ro

fa
br

ic
 li

ne
s 

S
he

ar
in

g
 

 
 

S
an

d
y 

sh
e

ar
 z

on
e 

in
 

th
e 

ba
se

 o
f t

he
 

up
pe

r 
til

l a
t t

he
 

Z
ie

m
up

e 
si

te
 

S
an

d
y 

sh
e

ar
 z

on
e 

in
 

th
e 

ba
se

 o
f t

he
 

up
pe

r 
til

l a
t t

he
 

Z
ie

m
up

e 
si

te
 

R
ot

at
io

n
 

 
 

N
o

 c
e
rt

a
in

 c
a

se
s 

fo
u

n
d

 
 

 

T
o

 b
e

 c
o

n
tin

u
e

d
 in

 t
h

e
 n

e
xt

 p
a
g

e
 



- 
12

9 
-

T
hi

n 
se

ct
io

n 
id

en
tif

ic
at

io
n 

T
hi

n 
se

ct
io

n 
im

ag
e 

M
ic

ro
fa

br
ic

 d
is

tr
ib

ut
io

n 
In

te
rp

r
et

ed
 m

ic
ro

fa
br

ic
 li

ne
s 

Lo
dg

em
en

t
 

 
 

U
pp

er
 ti

ll 
at

 th
e 

S
en

sa
la

 s
ite

 

U
pp

er
 ti

ll 
at

 th
e 

S
en

sa
la

 s
ite

 

T
o

 b
e

 co
n

tin
u

e
d

 in
 t

h
e

 n
e

xt p
a
g

e



- 
13

0 
-

T
hi

n 
se

ct
io

n 
id

en
tif

ic
at

io
n 

T
hi

n 
se

ct
io

n 
im

ag
e 

M
ic

ro
fa

br
ic

 d
is

tr
ib

ut
io

n 
In

te
rp

r
et

ed
 m

ic
ro

fa
br

ic
 li

ne
s 

U
pp

er
 ti

ll 
at

 th
e 

S
en

sa
la

 s
ite

 

C
om

pa
ct

io
n

 
 

 

S
ed

im
en

ta
tio

n 
ex

pe
rim

en
t 

T
o

 b
e

 c
o

n
tin

u
e

d
 in

 t
h

e
 n

e
xt

 p
a
g

e
 



- 
13

1 
-

T
hi

n 
se

ct
io

n 
id

en
tif

ic
at

io
n 

T
hi

n 
se

ct
io

n 
im

ag
e 

M
ic

ro
fa

br
ic

 d
is

tr
ib

ut
io

n 
In

te
rp

r
et

ed
 m

ic
ro

fa
br

ic
 li

ne
s 

W
at

er
la

in
 ti

ll 
at

 th
e 

S
en

sa
la

 s
ite

 

U
pp

er
 ti

ll 
at

 th
e 

S
en

sa
la

 s
ite

 

C
om

pa
ct

io
n 

or
 

ro
ta

tio
n 

 
 

 

W
at

er
la

in
 ti

ll 
at

 th
e 

S
en

sa
la

 s
ite

 

T
o

 b
e

 c
o

n
tin

u
e

d
 in

 t
h

e
 n

e
xt

 p
a
g

e
 



- 
13

2 
-

T
hi

n 
se

ct
io

n 
id

en
tif

ic
at

io
n 

T
hi

n 
se

ct
io

n 
im

ag
e 

M
ic

ro
fa

br
ic

 d
is

tr
ib

ut
io

n 
In

te
rp

r
et

ed
 m

ic
ro

fa
br

ic
 li

ne
s 

U
pp

er
 ti

ll 
at

 th
e 

S
en

sa
la

 s
ite

 

T
o

 b
e

 c
o

n
tin

u
e

d
 in

 t
h

e
 n

e
xt

 p
a
g

e
 



- 
13

3 
-

T
hi

n 
se

ct
io

n 
id

en
tif

ic
at

io
n 

T
hi

n 
se

ct
io

n 
im

ag
e 

M
ic

ro
fa

br
ic

 d
is

tr
ib

ut
io

n 
In

te
rp

r
et

ed
 m

ic
ro

fa
br

ic
 li

ne
s 

C
om

pa
ct

io
n 

or
 

si
m

pl
e 

sh
ea

r
 

 
 

U
pp

er
 ti

ll 
at

 th
e 

S
en

sa
la

 s
ite

 

T
he

 u
pp

er
 ti

ll 
at

 th
e 

S
en

sa
la

 s
ite

  



- 134 -

The identification of the sample orientation relative to former ice movement 
direction when a till was formed, the discrimination between different microfabric 
distribution patterns and collecting sufficiently large number of observations to perform at 
least semi-quantitative analyses are the most important problems encumbering the wider 
use of the presented approach of the till formation studies. 

The Table 4.2 demonstrates that different microfabric distributions around gravel 
grains can be observed even in the parallel thin sections prepared from the same sample. It 
indicates that the presented methodology is not universal. It can be used only to collect 
semi quantities data to evaluated the till geneses as suggested by Carr (1999). 

To use the described method for till formation studies, a good strategy for sample 
collection and thin section preparation must be elaborated. It is suggested that a hardened 
till sample need to be cut slice-by slice until sufficiently large gravel grain is exposed. 
Preparation of several parallel thin sections from single sample with different gravel grains 
exposed is favourable. 

From the images presented in Table 4.2 conclusion about the till volume where 
orientation of the smaller particles is governed by the large one can be drawn. In most 
obvious influence of large clasts on orientation of sand grains is less than one diameter 
from the surface of the large clast. 

Only from the Sensala site sufficiently large number of samples was collected to 
asses the abundance of different microfabric alignment patterns around gravel grains. In 
the sections of upper till mostly asymmetric microfabric distribution around gravel grains 
is observed. The spatial microfabric distribution structures around gravel grains in vertical 
sections in equal numbers are indicative of shearing as well as lodgement. The rotation 
structures are less common and compaction structures are not observed at all. The 
relatively small number of the studied cases (less than 10) does not allow drawing any firm 
conclusion.  

As the compaction structures are not observed the melt-out genesis of the upper 
till unit can be excluded. Both the rotation and shearing structures can arise in deforming 
till in simple shear conditions. The same is true for lodgement as Evans et al. (2006) 
summarised that the lodgement can take place at the base of the deforming layer as well. It 
is unlikely that well expressed rotation or shear microfabric distributions would form if the 
dominant till formation process is lodgement and ploughing, that is inevitably 
accompanying lodgement.  

Thus it can be concluded that the formation of the upper till at the Sensala site to 
some extent is a result of till deformation. Thus the motion of ice to some extent has been 
supported by substratum deformation. Lodgement, either at the base of deforming layer or 
at the sediment-ice interface, likely was one of the till accretion processes. However it 
must be noted, that a simple model of till formation in constant conditions is not likely as 
indicated by distinct microfabric strength separation in horizontal sections as well as 
inconsistent macrofabric at different measurement points. 

4.6. The methodological considerations  

To perform the microfabric distribution analysis of the till the need for automated 
methods are obvious as there are many thousands of elongated sand grains in a till volume 
as small as 1 cm3 that can be measured.  

There are several technically advanced analytical tools suitable for till microfabric 
analysis available such as X-ray tomography or magnetic susceptibility. There are 
published data regarding the use of X-ray tomography to analyses similar to tills (Videla et 
al., 2007). However the tomography itself does not provide the microfabric data, a three 
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dimensional raster image is acquired instead. This three dimensional image needs further 
processing, possibly, using similar tools as in case two dimensional image. Actually the 
image analysis and data processing tools used for two dimensional images can be adopted 
for three dimensions images. However, the equipment for X-ray tomography with 
sufficient resolution is expensive and not readily available. A magnetic susceptibility are 
used to measure the till microfabric in some studies (e.g. Thomason, Iverson, 2009; 
Principato et al., 2005). This method gives only summary microfabric orientation in a 
sample, not the spatial distribution of it additionally the individual particles contributing to 
the anisotropy of magnetic susceptibility can not be directly identified. Thus the thin 
section analysis, although somewhat old-fashion and comparably low-tech method, remain 
one of the most accessible tools for till microfabric spatial distribution studies.  

The image analysis tools are the obvious solution for overcoming the labours 
manual measurements using microscope (e.g. Chaolu, Zhijiu, 2001) or digital images (e.g. 
Hart et al., 2004). The image analysis methods can be divided in two groups: the object 
oriented approach – individual particles are identified for measurement – and statistical 
approach that involves determining some general statistical parameter of the image. The 
first one is straight forward extension of manual measurements of apparently elongated 
sand grains using microscope (e.g. Chaolu, Zhijiu, 2001) or macroscope (e.g. Carr 1999). 
The second approach has been tested with limited success by the Stroeven et al. (2001, 
2005) by counting the number of the intersections of parallel lines (secants) crossing the 
image in different directions with the grain boundaries. The advantage of the later group of 
method is that the problems of identifying individual grains in images may be partly 
avoided. 

It was possible to use the experience of manual microfabric measurement 
Kalvāns, 2004) to develop procedures for microfabric data acquisition according to object 
oriented approach in an evolutionary manner. Therefore the object oriented approach was 
used in this study.  

A simple colour thresholding is used to identify mostly quarts and feldspar sand-
sized grains. However more sophisticated methods could be applied. The adopted approach 
is easily understandable and any problems with data quality that could arise form poor thin 
sections image quality or methodological shortcomings can be easily identified by visual 
inspection. The adoption of statistical approach would require more serious image analysis 
tools that could potentially lead to more complicated and inefficient image analysis and 
identification of methodological uncertainties. 

Initiating the study author assumed that the use of dyed epoxy for the sample 
impregnation is the best approach to ensure easy thresholding in separating the sand grains 
and pores in the digital thin section images. In this case thin section images are attained 
using plain light, the pore space can be easily filtered out thanks to peculiar colour of dyed 
epoxy resin, the matrix can be separated due to its dark colour, and all the remaining light 
spots are sand-sized grains of transparent minerals (mostly quartz and feldspars). Thus, 
theoretically, parameters of almost all sand-sized particles can be included in the resultant 
data set. However the use acetone in case of several impregnation steps can result to 
diffusion of day out of the already hardened resin producing uneven colouring that can 
hamper image thresholding.  

Another approach is to acquire thin section images using cross polarised light. In 
this case all the pores and matrix are in dark colour as well as around half of the sand-sized 
particles. The remainder of sand-sized particles of most common minerals – quartz and 
feldspars – are in light colours and can be easily identified in digital images. The use of 
cross-polarised light reduces the number of grains appearing bright in a microscope 
however the contrast between these grains and the surrounding fine-grained matrix or pore 
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space is much larger than in the case of plain-light. Additionally the matrix colour in case 
of cross-polarised light is not as sensitive to thin section thickness as in case of plain light. 

Theoretically more complete representation of microfabric is achieved using the 
first approach, but practically the image processing and thresholding procedures are more 
complicated and can introduce additional uncertainties in data set, so the second approach 
is considered to be superior. However in a different geological setting where dark minerals 
grains or polycrystalline grains dominate in sand size fraction is common this approach 
might not be the best one.   

The composite image is best acquired by leaving buffer-lines between individual 
images rather than allowing touching or overlap of neighbouring images. Any grains cut by 
the buffer lines can be easily excluded from the data set, thus eliminating any distortion of 
calculated microfabric distribution that can arise due to tiny imperfections in alignment of 
individual images. It is found that due to spatially negligible fluctuations in image 
alignment joining or merging of overlapping image margins can produces linear zones 
across full thin section area of considerably and systematically distorted apparent 
microfabric representation. Theses zones can be eliminated manually – a cumbersome and 
time-consuming procedure. Thus the composite image acquisition with buffer-lines 
separating individual images is preferred. 

For data visualisation the relative density plots (Fisher et al., 1985) are preferred 
against traditional rose diagrams as the arbitrary chosen starting point of rose diagrams can 
introduce significant bias to the rose diagram appearance (Ballantyne, Cornish, 1979). For 
the same reason variations of the chi-square test as used by e.g. Hart et al. (2004) are not 
considered for data statistical analysis. 

Finally, to evaluate fabric strength, the two-dimensional eigenvalue method re-
introduced by Thomason and Iverson (2006) are preferred against the critical value of 
summary vector length as described by Davis (2002, pp. 322-330). Both methods give 
identical value of mean orientation and results can be visualized in a similar form. 
However the eigenvalue method is widely used to analyse the 3D macrofabric data in the 
glacial geology and thus are preferable for consistency reasons. Additional the obtained 
value of fabric strength is not a simple “yes” or “no” as in case of summary vector length, 
but quantitatively describes data sets regardless of the number of measurements 
considered.
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Conclusions 

Finally it can be concluded that the aim of the dissertation is reached and 
indicated tasks accomplished. As a result several important conclusions can be drawn, that 
are grouped there thematically: 
Study site-specific conclusions  

– well sorted sediments, in a case of simple shear, are prone in developing 
considerably stronger and more uniform microfabric distributions than 
diamicton sediments; 

– the odd joint system in a till at Plašumi gully site likely was developed in 
post-sedimentational processes that do not significantly affect the initial 
microfabric arrangement; 

– the sandy diamicton at Strante site formed from sheared, with water 
oversaturated gradually deposited in form of tectonic slices, followed by 
vertical compaction due to pore water expulsion; 

– the upper till at Sensala outcrop, at leas partly, was formed as a deformation 
till; 

– the till microfabric study results at Ziemupe, Strante and Sensala sites 
preclude existence of warm based glacier at the time. 

Till microfabric general characterisation 
– a large diversity of microfabric distribution are found in the tills; 
– summary microfabric orientation tend to be similar to the macrofabric 

orientation, however, the fabric strength is lover and usually microfabric 
strength in the horizontal sections are considerably smaller than in the 
vertical thin sections; 

– a trend is observed that smaller particles tend to have lower fabric strength; 
– four end members of the microfabric spatial distribution around gravel 

grains in the vertical thin sections are suggested: (1) shearing with stabile 
gravel grain position; (2) shearing with gravel grain rotation; (3) gravel 
grain lodgement and (4) vertical compaction; 

– The above described structures can be used for identification of till 
formation processes. 

Methodological considerations  
– the best results for automated microfabric analysis can be achieved by 

obtaining thin section images using cross-polarised light;  
– creating a composite thin section image it is advisable to introduce buffer 

lines between individual microphotograph, in odder to avoid systematic 
errors in automatically measured microfabric that can arise from small 
errors in image alignment; 

– the visualisation of measurements is best done using data density plots 
instead of traditional rose diagrams, and supplement it with the line 
indicating direction and strength of summary orientation; 

– the orientation statistics shall be calculated using the eigenvalue method, so 
ensuring the compatibility with most macrofabric studies.  
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